
Vectorization Cost Modeling for NEON, AVX and SVE⋆

Angela Pohla,∗, Biagio Cosenzab, Ben Juurlinka

aDepartment of Electrical Engineering and Computer Science, Technische Universität
Berlin, Einsteinufer 17, 10587 Berlin, Germany

bDepartment of Computer Science, University of Salerno, Via Ponte Don Melillo, 84084
Fisciano (Salerno), Italy

Abstract

Compiler optimization passes employ cost models to determine if a code trans-
formation will yield performance improvements. When this assessment is in-
accurate, compilers apply transformations that are not beneficial, or refrain
from applying ones that would have improved the code. We analyze the ac-
curacy of the cost models used in LLVM’s and GCC’s vectorization passes for
three different instruction set architectures, including both traditional SIMD
architectures with a defined fixed vector register size (AVX2 and NEON), and
novel instruction set with scalable vector size (SVE). In general, speedup is
over-estimated, resulting in mispredictions and a weak to medium correlation
between predicted and actual performance gain. We therefore propose a novel
cost model that is based on a code’s intermediate representation with refined
memory access pattern features. Using linear regression techniques, this plat-
form independent model is fitted to an AVX2 and a NEON hardware, as well as
an SVE simulator. Results show that the fitted model significantly improves the
correlation between predicted and measured speedup (AVX2: +52% for training
data, +13% for validation data), reduces the average error of the speedup pre-
diction (SVE: -43% for training data, -36% for validation data), as well as the
number of mispredictions (NEON: -88% for training data, -71% for validation
data) for more than 80 code patterns.

1. Introduction

Optimizing compilers identify code transformations that improve a program
in regard to a given goal, e.g. higher performance, lower energy consumption, or
smaller memory usage. However, code transformations are not always beneficial
and it is therefore important to understand if they may infer severe overheads.
For this reason, modern compilers, such as GCC and LLVM, typically perform a

⋆This article extends the paper Portable Cost Modeling for Auto-Vectorizers presented at
IEEE MASCOTS 2019 [1]

∗Corresponding author. E-mail address: angela.pohl@tu-berlin.de (Angela Pohl)

Preprint submitted to Elsevier February 2020

mailto:angela.pohl@tu-berlin.de

profit analysis to determine whether a transformation is beneficial, i.e. yielding
an improvement over to the code’s baseline version.

An accurate profitability analysis is particularly important for vectoriza-
tion. Auto-vectorizers work on either loops or basic blocks, trying to group
together multiple instructions in order to replace them with a vectorial one.
This process requires code transformations such as instruction replacement or
code re-writing, and it can introduce expensive overheads, e.g. because of com-
plex memory access patterns or vector shuffling.

State-of-the-art compilers use a cost model to understand whether applying
vectorization is beneficial. However, such cost models are relatively simple: the
cost is determined on individual instruction level, and the cost of a transformed
block is the sum of all of its individual instruction costs (Section 3 explains these
algorithms in detail). An additional challenge to design accurate vectorization
cost models comes from recent novel vector ISAs with scalable vector lengths.
An example of such an ISA is the Scalable Vector Extension (SVE) from ARM
[2]. In contrast to traditional vector ISAs, such as AVX2 or NEON with a
predefined fixed length for vector registers, SVE allows for scalable vector length,
which can be inferred at runtime through a register access. As a result, SVE
allows for Vector Length Agnostic (VLA) programming [3], and its supported
instructions differ from the traditional ones (an extensive discussion can be
found in the SVE reference manual [4]).

We have assessed the accuracy of the vectorization cost models of GCC and
LLVM on the TSVC benchmark [5], on an Intel Xeon E5-2697 with AVX2 SIMD
hardware extensions and on an ARMv8 CortexA-53 with a NEON SIMD unit.
In addition, we extended the analysis to an SVE platform which was simu-
lated using the gem5 simulator, since as of today, no implementation of SVE
is commercially available yet. Experimental results show that: (a) existing vec-
torization cost models are only weakly or moderately correlated with the actual
cost; (b) there are mispredicted codes where the error in cost modeling results
in wrong choices, i.e. either in vectorization with slowdowns (false positives)
or cases where vectorization would have been beneficial but it is not applied
(false negatives); (c) mispredictions have an impact on the final performance in
terms of execution time. Therefore, the heuristics used by today’s production
compilers are not sufficiently accurate.

The design of an accurate vectorization cost model is challenging for several
reasons. First, an accurate cost model should consider those code features (e.g.
instruction patterns) that impact the performance of the vectorized code. For
example, it should explicitly distinguish whether memory accesses are inter-
leaved, reversed or scalarized, as these patterns have a different impact on the
speedup of the generated code. Secondly, typical vectorization benchmarks are
not suitable to train and improve cost modeling: while they focus on diverse
vectorization cases, they do not cover a variety of cost modeling patterns. For
example, the whole TSVC benchmark (151 loops) contains only two reversed
loops. Finally, approaches should be portable between the different SIMD in-
struction set architectures (ISAs), and new ISAs with scalable vector length
pose additional challenges for modeling.

2

Based on these insights, we propose a novel modeling methodology that in-
creases the accuracy of auto-vectorizers’ cost models. Our approach models the
cost using a machine learning technique with accurate code feature representa-
tion, fitted on speedup, and using extended training data. It does not depend on
a specific SIMD instruction set and can be easily ported to any target hardware.
The resulting cost model can be implemented as a pluggable extension to the
LLVM cost model, and can be used by all of the compiler’s auto-vectorizers.

We make the following contributions:

• An analysis of the accuracy of the cost models of GCC and LLVM’s auto-
vectorizers perfomed on the TSVC benchmark on three different SIMD
ISAs (AVX2, NEON and SVE), which shows the correlation between pre-
dicted and actual speedup, the number of mispredictions, and their impact
on performance.

• A new portable cost model which improves state-of-the-art auto-vectorizers
on AVX2, NEON and SVE in terms of cost prediction correlation, number
of mispredictions and execution time. The proposed model predicts the
speedup of a vectorized code based on an accurate code feature represen-
tation, carefully tuned regression analysis, and an extended training data.
Results are cross-validated on TSVC and selected Polybench loops, and
fitted with different fitting techniques.

• An accurate feature analysis characterization based on both error- and
model-based techniques that highlights the portability of the model by
showing how different target-dependent code features are exploited on
multiple SIMD ISAs.

This article expands on previous work [1] by extending our analysis and
modeling work to the novel SVE vector instruction set. We enhanced our accu-
racy analysis of state-of-the-art compilers to cover different SVE vector lengths
and modified our proposed cost model to support the new instructions. Further-
more, we performed a thorough analysis on our feature representation, training
data gathering, and model fitting.

The paper is organized as follows: Section 2 provides an overview of related
work in the area of cost modeling in compilers. Existing cost models and their
experimental assessment are described, respectively, in Section 3 and 4. Section
5 describes the different components of our proposed model. Experimental
results showing cost model fitting, feature analysis, and improvement on cost
prediction correlation, misprediction and performance impact, are presented in
Section 6. The paper concludes in Section 7.

2. Related Work

Automatic vectorization has been extensively studied in literature [6, 7],
and multiple techniques have been proposed that exploit vectorial parallelism
either at loop level (LLV) or on straight-line code (SLP). This section focuses

3

on related work that investigates the cost modeling of those techniques, rather
than the proposed vectorization algorithms.

The ability to decide if vectorization is profitable is an important part of
modern optimizing compilers. Code transformation techniques such as loop
distribution and interchange [7] or if-conversion [8] can positively impact the
profitability of vectorization, and it is therefore critical to provide an accurate
cost model that correctly predicts whether overheads overcome the benefit of
vectorization. Wu et al. [9] recognized the importance of correctly deciding
when SIMDization is profitable in the XL compiler. Yuanyuan and Rongcai
[10] have proposed an analytical cost model for the Open64 compiler, which,
however, shows many cases where it cannot evaluate the right cost. Nuzman et
al. [11] proposed a cost model for vectorization of strided-accesses; however, it
does not consider other overheads or patterns.

Polyhedral compilers often include loop vectorization as part of a broader
loop optimization framework. Bondhugula et al. [12] applied inner-loop vector-
ization after a tiling heuristic and selected the inner loops interchange transfor-
mation that is vectorizable; however, their method does not consider vectoriza-
tion overheads. A polyhedral vectorization cost-model has been introduced by
Trifunovic et al. [13]: their approach focuses on scheduling metrics, but does
not cover code generation dependent metrics exploited in this work.

Machine learning models have gained interest in the compiler community
and have been used to define vectorization cost model as well. Stock et al. [14]
introduced a machine learning approach to improve automatic vectorization of
tensor contraction kernels and stencil computations. Their cost model assists
the generation of vectorized code by selecting the one with the best performance,
after applying permutation and unroll-and-jam. It operates on assembly code
and is not portable to non-Intel architecture; instead, our model is based on
features extracted from LLVM’s bitcode, and its portability is shown on both
Intel AVX2 and ARM NEOM ISAs. Park et al. [15, 16] used a model based on
logistic regression and support vector machine to narrow the set of candidate
polyhedral loop optimizations, including vectorization; their approach is based
on iterative search and, in contrast with our fully static approach, requires
to execute the transformed variants on the target machine. Trouvé et al. [17]
formulated vectorization profitability as a classification problem, predicted using
a support vector machine (SVM). They also used a similar classification model
to predict a compiler’s command-line options that choose the most profitable
vectorization in tensor contraction kernels [18]. Their SVM model is based on
only twelve features (six extracted from the abstract syntax tree, six from the
intermediate representation), resulting in a high number of mispredictions. In
contrast, our approach defines a larger number of code features, including those
that distinguish different memory access patterns.

While features representations of the codes are typically manually created,
Cummins et al. showed an end-to-end approach that automatically extracts
relevant code features from the source code [19]. Ithemal [20] uses a hierarchical
multiscale recurrent neural networks for data-driven basic block throughput
estimation, which is based on the opcodes and operands of instructions in a

4

basic block. In contrast with our work, which is portable among different vector
ISAs, Ithemal focuses on modern x86-64 ISA.

Cost modeling is also critical in the context of straight-line code vectoriza-
tion. Two examples are: realignment and data-reuse considered together with
loop unrolling [21], and Throttled SLP (TSLP) [22], a SLP model that forces
vectorization to stop earlier whenever this is beneficial, therefore overcoming the
limits of standard greedy algorithms. goSLP [23] shows how local heuristics only
explore a limited space among all available vectorization opportunities, leading
to suboptimal solutions, and propose a globally optimized SLP framework based
on ILP an solver and dynamic programming.

3. Cost Modeling in Auto-Vectorizers

In this section, we provide an overview of the currently implemented cost
models in LLVM’s and GCC’s auto-vectorizers.

3.1. Cost Modeling in LLVM
The LLVM compiler applies multiple vectorization passes to the code, i.e.

Loop Level Vectorization (LLV) and Superword Level Parallelism (SLP); the
optional Basic Block (BB) vectorizer has been deprecated in the latest compiler
versions. Both of the active passes use a similar approach to assess the cost of
a vectorization. They determine the block cost of the transformed loop body or
basic block (BB) and compare it to the scalar block cost. For this purpose, a cost
is assigned to each instruction, based on the instruction type, the underlying
hardware platform and the vectorization factor (VF). The vectorization factor
denotes the maximum number of elements that fit into one vector, e.g. VF = 8
for single precision floating point numbers and a vector width of 256 bit. In the
compiler, there are lookup tables for a variety of instruction set architectures
and SIMD extensions defining these individual instruction costs. This block
cost analysis is then performed for all possible vectorization factors. Since the
same vectorization factor is applied to all instructions in one BB, the maximum
possible vectorization factor is derived from the largest data type loaded/stored
in the BB. Afterwards the minimum cost is chosen. If this minimum is the scalar
block cost, no vectorization is applied, although other optimization techniques,
such as unroll-and-jam, might be performed. The complete algorithm is shown
in pseudo-code in Figure 1. To take overhead inferred by vectorization into
account, a loop trip count threshold is added to avoid vectorization of ”tiny”
loops (trip count < 16). For such tiny loops, vectorization is allowed only if no
overhead is added outside of the loop.

Despite both passes using the same underlying lookup tables, their cost esti-
mation varies due to slight differences in their respective lookup functions. For
example, one pass assigns individual costs to the getelementptr instruction,
while another merges this cost with the load /store instructions’ costs. In
addition, all passes use a different baseline, i.e. scalar block cost, to assess the
transformation benefit. The results of the passes’ cost analysis therefore cannot

5

cmin = cscalar
V Fmin = 1
for all Vectorization Factors do

for all BBs in Loop do
for all Instructions in BB do

cbb+ = getInstrCost(Instr, V F)
end for
cvec+ = cbb

end for
if (cvec < cmin) then

cmin = cvec
V Fmin = V F

end if
end for
return cmin, V Fmin

Figure 1: Pseudo-Code of LLV’s cost calculation in LLVM

be compared. It is also possible that one pass deems a transformation benefi-
cial, while another may not. An analysis on which of these slightly varying cost
models is more accurate, has not been performed yet.

3.2. Cost Modeling in GCC
The GCC vectorizer combines SLP and LLV vectorization in one compiler

pass [24]. This pass utilizes a similar approach to cost modeling as described
for LLVM. It also determines a BB’s cost based on its individual instruction
costs and the vectorization factor. However, it also accounts for vectorization
overhead outside of a loop body. As the overhead, such as a scalar loop tail,
becomes less significant in terms of cost with increasing loop iterations, the cost
model tries to solve the following inequation to determine the minimum number
of profitable loop iterations n:

n · cscalar + cs,out > (n− nout) ·
cvec
V F

+ cv,out

When a number of loop iterations n can be found where the cost of the vectorized
code cvec and the overhead outside of the loop cv,out is less than the scalar cost
cscalar and the scalar overhead cs,out, the loop is vectorized. In addition, a
runtime check is added to avoid execution when the number of loop iteration is
smaller than n. This has the side effect that vectorization is possible even for
small iteration counts. If the inequation cannot be solved, the loop is deemed
to be unvectorizable. The underlying cost prediction thus impacts the decision
to vectorize a loop, as well as the minimum number of profitable iterations.

3.3. Cost Modeling for SVE in GCC
When the vector length is unknown, the compiler needs to ensure that vec-

torization is beneficial for all vector sizes. To avoid having to check all potential
vector lengths for profitability, GCC assumes that speedup is constant or strictly

6

increasing with vector size, i.e. a code that is beneficial to vectorize with VF=4
is also beneficial for VF=16. It therefore performs a single cost analysis for the
smallest possible vector size, which is 128 bit for ARM SVE. This approach
does not take into account, however, that speedup might not scale perfectly,
and increasing vector lengths can have negative impact on speedups, such as
compute-bound kernels becoming memory bound. Nonetheless, we proceed with
GCC’s assumption that speedup scales perfectly with increasing vector sizes. It
enables us to extrapolate the estimated speedup S for larger vector lengths, e.g.

SV F=16 = 4 · SV F=4

when analyzing the accuracy of the cost model for increasing vector lengths.

4. Baseline Accuracy Analysis

The lookup tables used to determine cost in LLVM and GCC are based on
latency and/or throughput numbers of individual instructions. However, cost
is considered an abstract value in a sense that it does not translate into code
performance directly, but must be interpreted relative to other cost values. The
accuracy of these cost relations, i.e. the predicted speedup, has not yet been
studied.

4.1. Setup
In this analysis, we compared speedups estimated by the compilers with

actual measured speedups of the TSVC benchmark [5]. The benchmark con-
sists of 151 loop patterns that test different vectorization challenges, such as
dependence testing, statement reordering, or control flow. Contrary to other
popular benchmarks, the TSVC kernels typically incorporate only one loop or
one set of nested loops. This allows us to attribute a kernel’s speedup directly
to the speedup of its innermost loop, without further code instrumentation or
annotation. We set the default number of loop iterations to 32, 000, thereby
not considering loops with small trip counts. To get accurate measurements
of the vectorization only, further loop optimizations, such as interleaving and
automatic unrolling, were disabled.

The first test hardware is an Intel E5-2697 processor with AVX2 extensions,
which corresponds to a vectorization factor of 8 for single precision floating
point calculations. The second hardware is an ARMv8 CortexA-53 with 128-bit
NEON extensions, which corresponds to a vectorization factor of 4 for single
precision floating point numbers.

The third hardware is a platform that supports ARM’s Scalable Vector Ex-
tension (SVE), a vector length agnostic SIMD ISA. As no SVE hardware is
available on the market yet—first products are expected in 2021—we used the
gem5 simulator for our measurements [25]. gem5 is a modular platform for
processor and system architecture simulation. It is actively supported by ARM
and a branch to simulate hardware with SVE is publicly available [26]. Within
this branch, there is a choice of three different CPU models: atomic, in-order,

7

and out-of-order. Since SVE is targeted for HPC applications, we chose the out-
of-order CPU model, which resembles an ARM Cortex-A72. For SVE, vector
lengths are variable between 128 and 2048 bit. We selected the smallest vector
length of 128 bit and the vector length of the first product to hit the market,
Fujitus’s A64FX with 512 bit vector length [27].

For compilation, we used Clang/LLVM 6.0 and GCC 8.2.0. For SVE, how-
ever, auto-vectorization is currently supported in GCC only. We built three
different code versions:

• scalar: all optimizations are turned on, except for the vectorizers

• vectorized: all optimizations are turned on, including the vectorizers

• forced vectorization: all optimizations are turned on, including the vec-
torizers. Furthermore, the cost model is either set to unlimited (GCC) or
all instruction costs are forced to 1 (LLVM) to vectorize all codes regard-
less of the corresponding cost model prediction.

Running the test bench provides the measured speedup Smeas for each loop
kernel by calculating

Smeas =
tscalar
tvec

,

where tvec can be the result of regular or forced vectorization. Since the gem5
simulator does not produce execution times but cycle counts, we used these
values to derive the measured speedups for the ARM SVE hardware.

To obtain the speedup estimated in the compiler Sest, we analyzed the vec-
torization reports. The detailed reports provide the scalar loop body cost cscalar,
as well as the vectorized loop body cost cvec. The predicted speedup can thus
be derived as

Sest =
cscalar
cvec

As described in the previous section, GCC also accounts for outside loop costs,
i.e. prologue and epilogue cost, that have to be added to the loop body cost.
This applies to scalar and vectorized loops. For large iteration counts, however,
the cost calculation converges to the formula above, which is the case for the
TSVC benchmark.

For our results, we determined the estimated and measured speedups for
LLVM’s LLV pass, as well as GCC’s vectorizer. We omitted LLVM’s SLP pass
due to the loop based kernels in our benchmark, which are not suitable for SLP
vectorization. In fact, only three kernels out of the 151 are vectorizable with SLP
by both compilers. We then removed those kernels from the analysis where the
cost model was not used. This applies to codes where optimization techniques
such as pattern substitution or reductions are applied; in these cases, vector-
ization is always deemed beneficial and no further assessments are performed.
After further removing identical kernels, the evaluated dataset consisted of 85
kernels for LLVM and 65 kernels for GCC on the AVX2 platform, as well as 71
kernels for LLVM and 66 kernels for GCC on the NEON platform. On the SVE
platform, GCC was able to vectorize 79 kernels.

8

4.2. Accuracy Metrics
The accuracy of the speedup prediction of compiler cost models in auto-

vectorizers has never been studied. In this section, we therefore introduce met-
rics to qualify their accuracy. We distinguish between three kinds of metrics:
precision, classification, and impact metrics. The first class of metrics mea-
sures how well the predicted and the measured performance correlate, while
the second assesses if the compiler made the correct decision in terms of ”To
vectorize or not to vectorize?”. The third class quantifies the impact that inac-
curacies within the cost model have on code performance. All metrics serve as
optimization goals for our cost model approach.

The first class of metrics are precision metrics. As mentioned when dis-
cussing the experimental setup, we can derive an estimated speedup Sest and a
measured speedup Smeas for each loop kernel in the benchmark. For an accurate
cost model, the measured speedup of a code Smeas must equal the estimated
speedup Sest, i.e.

Sest = Smeas.

Based on this relation, we can define two precision metrics:

• the correlation ρ between a set of estimated and measured speedups and

• the average and maximum prediction error.

To determine the correlation between the two datasets, we apply Pearson’s Cor-
relation Coefficient. To measure the error, i.e. the distance of each plot point
to the straight line, we used the Euclidian Distance L2 as the second precision
metric. Due to the varying set sizes of vectorized kernels on the different plat-
forms, denoted with m, we then normalized the distance to obtain the average
value, i.e.

L2
avg =

1

m
·

m∑
j=1

||Sj,meas − Sj,est||

Similarly, L2
max is the maximum value from the set of L2 distances.

The second class of metrics concerns the classification results of the compiler.
During vectorization, the compiler has to decide if a transformation is beneficial.
It therefore classifies loops into two categories: beneficial and not beneficial.
An inaccurate cost model will consequently produce two types of classification
errors:

• false positives (f⊕): the compiler deems a transformation beneficial, but
the vectorized code exhibits no speedup or a slowdown.

• false negatives (f⊖): the compiler does not deem the transformation ben-
eficial, but the vectorized code would have exhibited a speedup.

To account for measurement inaccuracies, we imposed a 5% threshold, i.e. kernel
slowdowns are classified as Smeas < 0.95, while kernel speedups are classified as
Smeas > 1.05. Out of the three generated code versions, the vectorized code will

9

contain the loops where the compiler deemed the vectorization to be beneficial.
This incorporates patterns that do not exhibit any speedups or even slowdowns,
i.e. the false positives (f⊕). The forced vectorization adds patterns where the
compiler previously did not apply vectorization due to the cost model predicting
no benefit, i.e. the false negatives (f⊖).

Inaccurate cost models with low precision produce classification errors that
harm code performance. As a third class of metrics, we therefore measure the
impact the classification errors have on the execution time of a dataset. To
understand the impact, we need to evaluate three different execution times:

• tscl: the normalized scalar execution time of a benchmark with m kernels.
tscl equals the set size of vectorized kernels and serves as the baseline
execution time.

tscl =

m∑
j=1

tj,scl
tj,scl

= m

• tvec: the normalized vectorized execution time of a benchmark with m
kernels as produced by the compiler, including classification errors. The
vectorized execution time of each kernel is normalized to its respective
scalar execution time and the runtimes of all kernels are added up, i.e.

tvec =

m∑
j=1

tj,vec
tj,scl

When a kernel exhibits a speedup, tj,vec

tj,scl
< 1, while tj,vec

tj,scl
> 1 for slow-

downs.

• topt: the normalized vectorized execution time of a benchmark with n
kernels without classification errors, overwriting the classification by the
compiler.

tvec determines the execution time of a benchmark deploying a non-perfect cost
model, such as the state of the art, while topt gives the optimal execution time
that can be achieved.

4.3. Results
An overview of the results of our accuracy analysis is given in Table 1,

while a visual representation is displayed in Figure 2. In these scatter plots,
each plot point corresponds to one of TSVC’s analyzed kernels. Shaded areas
either mark false positives (f⊕ : Sest > 1, Smeas < 0.95) or false negatives
(f⊖ : Sest < 1, Smeas > 1.05), while the straight line indicates the perfect
positive correlation of ρ = 1.

Overall, both compilers tend to overestimate the speedup gained by vector-
ization. Such over-estimations of speedup imply that there is no or little penalty
added in the cost calculation for vectorization. As an example, LLVM tends to
assume perfect scaling of memory operations, i.e. the load/store costs are the

10

AVX2 NEON SVE (GCC)
LLVM GCC LLVM GCC 128 bit 512 bit

Size 85 65 71 66 79 79
ρ 0.58 0.33 0.75 0.48 0.29 0.39

L2
avg 0.28 0.48 0.26 0.21 0.35 1.01

L2
max 4.58 6.30 4.41 3.38 8.53 15.00

f⊕ 4 2 0 0 0 0
f⊖ 9 0 17 2 0 0

tscl 85 65 71 66 79 79
tvec 53.53 33.16 40.34 31.83 34.87 25.82
topt 51.79 32.53 36.54 31.03 34.87 25.82

Table 1: Accuracy metrics for baseline analysis of cost model’s speedup prediction

same for scalar and vectorized code. With vectorization, however, the memory
bandwidth demand grows, including a kernel becoming memory bounded due
to vectorization. Such side effects as in this example cannot be modeled with
today’s cost models, since they only analyze cost at instruction level, regardless
of other code properties such as arithmetic intensity. The following subsections
discuss the architecture-specific results in more detail.

4.3.1. Intel AVX2
On the AVX2 platform, both compilers tend to overestimate the speedup

gain. This results in moderate-to-weak correlations of ρ = 0.58 (LLVM) and
ρ = 0.33 (GCC). LLVM estimates a speedup of around 6x for a large number of
kernels, while GCC estimates speedups to range between 6x-8x. The measured
speedups, on the other hand, range between 1x-3x for both compilers. The av-
erage L2 distance is 0.28 for LLVM and 0.48 for GCC, with maximum distances
L2
max reaching up to 4.58 (LLVM) and 6.30 (GCC), respectively.

In regards to the classification errors, LLVM mispredicts 13 kernels (f⊕ :
4, f⊖ : 9), while GCC does not produce any false negatives, but two false
positives (f⊕ : 2, f⊖ : 0). These mispredictions reflect in our impact metric,
the execution time. Even though GCC only produces two false positives, the
difference between vectorized and optimal optimal execution time is 0.63 time
units, i.e. the vectorized code reaches 98% of maximum performance (Svec =
1.96, Sopt = 2.00). This gap is larger for the vectorized code generated by
LLVM due to the large number of false negatives, i.e. missed vectorization
opportunities. The 13 mispredictions from LLVM cause an overall difference of
1.74 time units and the vectorized kernels reach 97% of maximum performance
(Svec = 1.59, Sopt = 1.64).

4.3.2. ARM NEON
Compard to the AVX2 platform, correlations are higher on the NEON plat-

form, with ρ = 0.75 (LLVM) and ρ = 0.48 (GCC). As can be seen in the plots,

11

both compilers show distinct clusters in their respective performance prediction,
resulting in a clear classification whether to vectorize or not. This is due to the
assumption that the majority of kernels scales perfectly (Sest = V F); there are
kernels where both compilers even assume superlinear speedups (Sest > V F),
too. Measured speedups are in the same range as on the AVX2 hardware,
however, i.e. between 1x-3x. In regards to the average L2 distance, both com-
pilers achieve lower average errors than on the AVX2 platform (0.26 for LLVM,
0.21 for GCC). Taking the smaller vectorization factor and hence smaller target
interval into account, on the other hand, shows a larger error relative to the
vectorization factor.

Contrary to the AVX2 platform, neither compiler produces false positives
on the ARM NEON hardware. LLVM is conservative in its decisions, however,
and produces 17 false negatives (f⊕ : 0, f⊖ : 17), while GCC only produces
two (f⊕ : 0, f⊖ : 2). As a consequence, performance achieved by the code
vectorized by GCC is close to its optimum (Svec = 2.07, Sopt = 2.10). The code
vectorized by LLVM, however, only achieves 91% of the optimum performance
(Svec = 1.76, Sopt = 1.94).

4.3.3. ARM SVE
Figure 2c shows the analysis results for two different vector lengths, 128 bit

and 512 bit, both executing the same vector length agnostic code on the simu-
lated hardware. The estimated speedups are identical for both plots, scaled to
their respective vectorization factors, as GCC performs a single benefit analysis
to cover all potential vector lengths. The measured speedups are generated by
two different simulation runs with respective hardware settings. For both vector
lengths, the correlation between the estimated and the measured speedup is low,
i.e. ρ = 0.29 for a vector length of 128 bit and ρ = 0.39 for a vector length of 512
bit. As on the ARM NEON platform, GCC estimates the majority of kernels
to scale perfectly, but actual speedups are lower. There is a set of kernels, how-
ever, where the simulator assumes a perfect scaling of vector instructions, i.e.
no overhead added by vectorization, or even super-linear speedups. This can be
observed in particular on the 128-bit platform, where measured speedups can be
significantly higher than the vectorization factor (Smeas > 1.5 · V F). As a con-
sequence, the average Euclidian distance ranges between 0.35 and 1.01, and the
maximum distance for the 128-bit platform is as high as L2

max = 8.53. Despite
the low correlation, GCC does not produce any classification errors (f⊕ : 0,
f⊖ : 0). This is coherent with the results from the ARM NEON platform,
where GCC only produces false negatives, but no false positives. Due to the
optimistic runtime estimation by the simulator, there are no false negatives on
the ARM SVE platform.

12

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest

Smeas

LLVM

ρ = 0.58

2 4 6 8

2

4

6

8

1

1

ρ = 1

Sest

Smeas

GCC

ρ = 0.33

(a) Intel AVX2

2 4 6

2

4

6

1

1

ρ = 1

Sest

Smeas

LLVM

ρ = 0.75

2 4 6

2

4

6

1

1

ρ = 1

Sest

Smeas

GCC

ρ = 0.48

(b) ARM NEON

2 4 6

2

4

6

1

1

ρ = 1

Sest

Smeas

GCC, 128 bit

ρ = 0.29

4 8 12 16

4

8

12

16

1

1

ρ = 1

Sest

Smeas

GCC, 512 bit

ρ = 0.39

(c) ARM SVE

Figure 2: Analysis results for the TSVC benchmark for LLVM and GCC loop level vector-
ization passes on Intel AVX2 (2a), ARM NEON (2b), and ARM SVE (2c) hardware; SVE
plots show GCC vectorization results for two different vector lengths; shaded areas mark false
positive and false negative predictions, straight line marks perfect positive correlation of ρ = 1

13

5. Improving the Modeling

Based on the analysis insights, we sought an improved method to create more
accurate performance predictions. In this section, we describe the transition
from modeling an abstract cost to predicting individual loop speedup, explain
how the features for the new cost model were chosen and present enhancements
to the existing TSVC benchmark to ensure sufficient feature coverage. Further-
more, we discuss how to modify the existing model for the SVE architecture,
i.e. adding ISA specific features, as well as avoiding overfitting of the model.

5.1. Targeting Speedup Instead of Cost
As described previously, a BB’s vectorized cost cvec is calculated as the sum

of all its individual instruction costs ci. This vectorized cost cvec is then com-
pared to the block cost of the scalar code to determine a code transformation’s
profitability. We have used this predicted speedup as the accuracy measure in
the previous analysis section.

Based on this approach, we can model the predicted speedup directly, instead
of the indirect method of determining individual instruction costs ci from which
the speedup will be derived. As a consequence, rather than calculating

Sest =
cscalar
cvec

=
cscalar∑

∀i∈I

nici

with I denoting the set of instruction types and ni denoting the number of oc-
currences of a specific instruction type i, we model a weight wi that contributes
to the predicted speedup

Sest =
∑
∀i∈I

niwi

In this context, wi can be positive, zero, or negative. A positive weight indi-
cates that an instruction scales well with vectorization, while a negative weight
indicates an added overhead, i.e. a slowdown.

As an additional refinement, we incorporated a metric for the block compo-
sition into our model. As of today, compilers look at each instruction cost ci
individually, regardless of the BB’s other instructions. However, code character-
istics such as the arithmetic intensity impact the maximum achieved speedup.
By normalizing the individual instruction counts ni to the total number of in-
structions in the BB N =

∑
∀i∈I ni, we account for different instruction mixes.

The model thus becomes
Sest =

∑
∀i∈I

ni

N
wi

Our modeling approach has the advantage that it is no longer tied to a
scalar baseline cost cscalar, which can also introduce error. Especially with the
value of a block cost being restricted by its integer data-type only, small relative
errors can result in large absolute errors. As an example, cvec ∈ (1, 3876) and
cscalar ∈ (0, 170, 068) in GCC for the TSVC benchmark on the AVX2 platform.

14

Furthermore, confining our dependent variable, i.e. the target speedup Sest, to
an interval of (0, V F) will help in model fitting later.

An additional benefit of this approach is that it allows the comparison of
different vectorization options. Since the performance estimation is no longer
tied to a certain baseline, but predicts a block speedup, the results can be
compared to other predictions. As a use case example, our cost model enables
the comparison of LLV and SLP vectorization results to select the better option,
since there are codes where SLP outperforms LLV in LLVM (e.g. kernel s128).

5.2. Feature Representation and Extraction
An important aspect of our modeling approach is keeping the model abstract

and hardware agnostic. We therefore chose to use LLVM’s Intermediate Rep-
resentation (IR) as a baseline feature set. In its latest release, the LLVM IR
instructions can be classified into five different categories: terminator instruc-
tions, binary instructions, bitwise binary instructions, memory instructions, and
others. In total, there are 62 instruction types. To understand if this abstract
code representation is sufficient for speedup modeling, we grouped together all
TSVC code patterns that share the same representation in LLVM IR and com-
pared the achieved speedups within each feature group. From this analysis, we
were able to see that a further differentiation for memory operations was needed.
For example, the following two loops share the same representation on IR level:

for(i=0; i < LEN; i++){
x[i] = y[i] + 1.0;

}

for(i=LEN -1; i>=0; i--){
a[i] = b[i] + 1.0;

}

However, speedup varies by 10% due to the reverse loop iteration. This
difference stems from the fact that for the reverse loop, two half vectors of b
are loaded and assembled instead of the one contiguous load operation used for
y in the loop with the positive stride. This difference in code generation is not
yet visible at IR level, since it will be performed later in the backend.

We therefore replaced the load and store features with more fine grain
memory access pattern features. These access patterns were taken from the cur-
rent cost model implementation and enable the differentiation between Unknown,
Vector, VecReverse, Interleaved, Gather/Scatter and Scalarized for both,
load and store accesses. This leaves 72 features to model the code. Not all of
these featues are used to model loops, however. For example, out of the termi-
nator instruction category, only the branch instruction is utilized. Nonetheless
we decided to keep all features in our model to preserve the flexibility to use
our cost modeling approach for other optimization passes, such as SLP vector-
ization.

The SVE instruction set architecture introduces a set of instructions to ef-
ficiently vectorize specific code patterns. The most notable instructions are the
first fault in register memory operations and the whilelt instruction
for loop management. These instructions were therefore added to the model,

15

although their use is not covered by existing testbenches [28]. In addition, in-
structions in the SVE instruction set are typically predicated and predication
requires additional computing time, therefore impacting the speedup. Instead
of specifically modeling this overhead, however, our approach already accounts
for it indirectly by moving the model target from cost to speedup.

5.3. Enhancing the Training Data
For the initial baseline analysis, the TSVC benchmark was used to get the

vectorization results for over 150 test kernels. However, when training a model,
a great number of different codes is desirable to ensure a decent feature coverage
and sufficient code variety. This is especially true when trying to apply machine
learning algorithms. In this spirit, a Loop Repository for Vectorizing Compilers
(LORE) [29] has been created by a consortium of compiler researchers. At the
time of writing, however, these codes were not yet readily accessible.

To enhance the initial dataset of TSVC kernels, we therefore compiled Poly-
bench [30] and extracted those kernels that LLVM was able to vectorize with
forced compilation. The extraction was necessary due to the fact that we need
single loops or a single set of nested loops in our kernels. In Polybench, kernels
can have more than one set of (nested) loops, however.

In total, 14 more kernels were added to the baseline setup. It results in
training dataset of 99 vectorizable kernels on the AVX2 hardware and 85 vec-
torizable kernels on the NEON platform. Overall, the training codes cover a set
of 31 features on AVX2 and 29 features on NEON.

We were not able to extended the training data set for the SVE hardware,
however. After removing kernels where the gem5 simulator estimates a super-
linear speedup (-3 kernels) and those that share the same feature representation
(-22 kernels), we analyzed the remaining feature coverage. To ensure a stable
model, we discarded all kernels with a unique feature, leaving only 31 kernels
in the training data set.

5.4. Dimensionality Reduction for SVE Hardware
Due to the small training data set for the SVE hardware, we chose to reduce

the dimensionality of the feature set for the SVE models. Otherwise, keeping the
large feature space will result in an overfitted model and a limited capability
to predict kernel performance outside of the training data set. The decision
which features to keep for the respective model was based on the contribution
of each feature towards the overall error reduction in the model, i.e. its impact
in minimizing the L2 distance. We therefore conducted a greedy forward feature
selection for each of our fitting approaches and selected the top ten features.
For two of the three fitted models, even less than ten features were needed, as
the model error did not decrease further with adding more features. The resuls
of the greedy forward feature selection are discussed in detail in Section 6.3.

16

6. Experimental Results

Having defined all features and an extended training data set, the model is
fitted to three different hardware platforms to demonstrate the portability of the
approach. In this section, we present the results of the fitted model, including
validation and a detailed feature analysis.

6.1. Cost Model Fitting
To create platform specific cost models out of our abstract code represen-

tation, we applied different fitting techniques to determine the most suitable
one. With Smeas as the dependent variable and the instruction weights wi as
independent variables, three different approaches were tested:

• Least Squares (LS): This method determines the wi that minimize the
L2 norm ||Smeas − Sest||2.

• Non-Negative Least Squares (NNLS): This approach also minimizes
the L2 norm, but imposes an additional restriction on the resulting wi, as
they must not be negative.

• Support Vector Regression (SVR) with Polynomial Kernel: For
this approximation, a support vector machine is used for regression instead
of classification. The machine can utilize different kernels, such as linear,
polynomial, or sigmoid kernels to approximate data. In this experiment,
we used polynomial approximation to understand if a non-linear kernel is
more suitable for our problem than the linear techniques.

All models were fitted using Python’s NumPy, SciPy, and scikit-learn
libraries [31, 32, 33]. For the SVR implementation, a grid search was conducted
to find the most suitable parameter values for the error range ϵ, the error penalty
C, and the polynomial degree. The parameter set with the least number of
mispredictions was chosen, i.e. (C, ϵ) = (1, 1) and a polynomial degree of 4. All
results can be seen in Figure 3.

Compared to the LLVM baseline in Figure 2, all three fitting methods were
able to reduce the over-estimation of speedup significantly. The models fit-
ted with support vector regression, however, either predict the overall average
speedup of S = 2.01 for the AVX2 and NEON platform, or are overfitted on
the SVE hardware. While the high correlation of ρ = 0.92 seems promising,
the model becomes unstable during cross validation and produces a significant
amount of mispredictions. The fitting approach with SVR is therefore not suit-
able for creating an accurate cost model and will not be discussed further. The
linear fitting methods are able to increase the correlation from 0.58 to 0.88 (LS,
+52%) and 0.79 (NNLS, + 36%) on the AVX2 platform, from 0.75 to 0.88 (LS,
+ 17%) and 0.80 (NNLS, + 7%) on the NEON platform, and from 0.48 to 0.79
(LS, +65%) and 0.63 (NNLS, +31%) on the SVE platform. At the same time,
L2 distances are decreased from 25.45 to 8.19 (LS, −68%) and 10.9 (NNLS,
−57%) on the AVX2 platform, from 19.48 to 3.54 (LS, -82%) and 4.47 (NNLS,

17

1 2 4 8

1
2

4

8

1

1

ρ = 1

S′
est

Smeas

AVX2
ρ = 0.88

2 4 6

2

4

6

1

1

ρ = 1

S′
est

Smeas

NEON
ρ = 0.88

12 8 16

1
2

8

16

1

1

ρ = 1

S′
est

Smeas

SVE, 512 bit
ρ = 0.79

(a) Least Squares (LS)

2 4 8

2

4

8

1

1

ρ = 1

S′
est

Smeas

ρ = 0.79

2 4 6

2

4

6

1

1

ρ = 1

S′
est

Smeas

ρ = 0.80

12 8 16

1
2

8

16

1

1

ρ = 1

S′
est

Smeas

ρ = 0.63

(b) Non-negative Least Squares (NNLS)

2 4 8

2

4

8

1

1

ρ = 1

S′
est

Smeas

ρ = 0.64

2 4 6

2

4

6

1

1

ρ = 1

S′
est

Smeas

ρ = 0.58

2 8 16

2

8

16

1

1

ρ = 1

S′
est

Smeas

ρ = 0.92

(c) SVR, Polynomial Kernel

Figure 3: Correlation between estimated and measured speedups of training data after fitting
for three fitting techniques; left column shows fitting for AVX2 platform, middle column for
NEON platform, right column for SVE platform with 512 bit vector length

- 77%) on the NEON platform, and from 44.78 to 17.36 (LS, -61%) and 25.96
(NNLS, -42%) on the SVE platform.

The number of mispredictions was reduced as well for two of the three plat-
forms. On the AVX2 platform (baseline: f⊕ : 4, f⊖ : 9), the LS model is able to
reduce both, the number of false positives and false negatives (f⊕ : 3, f⊖ : 3).
All false positives were also mispredicted in the baseline model, while the false
negative codes are a completely different set of kernels. The kernel that was

18

removed from the baseline’s set of false positives is a kernel with heavy control
flow statements (kernel s279) that the LS model now predicts correctly. As a
consequence of the overall reduction in false predictions, the normalized exe-
cution time decreases from 60.35 to 58.61 time units (-3%). The NNLS model
reduces the overall number of mispredictions from 13 to 9 (f⊕ : 9, f⊖ : 0).
However, all mispredictions are false positives. This is due to the model’s non-
negative weights wi, as an inaccurate weight will likely add on to the predicted
speedup and thus cause false positives rather than false negatives. Since false
positives are more harmful for performance due to the inferred slowdowns, the
overall execution time consequently increases from 60.35 to 63.43 time units
(+5%). It hints that the NNLS fitting method is not suitable for the presented
modeling approach on this specific platform.

On the NEON platform (baseline: f⊕ : 0, f⊖ : 17), both fitted models
decrease the number of mispredictions and achieve a reduction in execution time.
The LS-fitted model eliminates 15 false negative predictions, while introducing
only one false positive (f⊕ : 1, f⊖ : 2). The false positive code contains array
indirections (kernel s4116) and is predicted to have a speedup Sest = 1.12, while
it exhibits a small slowdown of Smeas = 0.96. Despite this slowdown, the overall
execution time is reduced from 47.24 to 43.02 time units (-9%). The model fitted
with NNLS removes all false negatives, but introduces three false positives at
the same time (f⊕ : 3, f⊖ : 0). The impact of these false positives is limited,
however, and the model achieves a reduction in execution time from 47.24 to
43.14 time units (-9%) due to the eliminated false predictions.

On the SVE platform, the models do not introduce any mispredictions, and
are therefore comparable to the GCC baseline. The overview of all model metrics
can be found in the summarizing tables in Figure 4.

6.2. Model Validation
After fitting the model, we validated its stability and predictive ability using

Leave One Out Cross Validation (LOOCV). LOOCV is equivalent to a leave-p-
out cross-validation with p = 1. The choice of p, preferred to larger values, is
motivated by the training data’s sparse dataset, as all training codes have been
designed to tackle diverse individual patterns.

To run the LOOCV analysis, a model is trained leaving out one kernel. The
speedup of the left-out kernel is then predicted using that trained model. This
process is repeated for each kernel in the training dataset. Results for the LS-
and NNLS-fitted models can be found in the summarizing tables in Figure 4.
The figure also visualizes the results for the best fitting model, i.e. the LS-fitted
models for the AVX2 and NEON hardware, and the NNLS-fitted model for the
SVE platform.

As expected, the error of the LOOCV results is generally larger than when
a model is trained on the whole data set. On AVX2, the correlation drops
from 0.88 on fitted data to 0.66 on LOOCV data for the LS-fitted model, which
is still higher than the baseline of 0.58 (+13%). For the NNLS-fitted model,
however, the correlation between estimated and measured speedup drops below

19

AVX2
LS NNLS

Baseline Fitted LOOCV Fitted LOOCV
Size 99

ρ 0.58 0.88 0.66 0.79 0.53
L2
avg 0.26 0.08 0.14 0.11 0.15

L2
max 4.58 3.88 6.01 4.33 6.05
f⊕ 4 3 3 9 9
f⊖ 9 3 3 0 0
tscl 99
tvec 60.35 58.61 58.61 63.43 63.43
topt 56.93

2 4 6 8

2

4

6

8

1

1

ρ = 1

S′
est

Smeas

Least Squares
ρ = 0.66

NEON
LS NNLS

Baseline Fitted LOOCV Fitted LOOCV
Size 85

ρ 0.76 0.88 0.62 0.80 0.37
L2
avg 0.23 0.04 0.07 0.05 0.10

L2
max 4.56 1.56 2.10 1.44 4.84
f⊕ 0 1 2 3 3
f⊖ 17 2 3 0 1
tscl 85
tvec 47.24 43.02 43.49 43.14 44.04
topt 42.65

2 4 6

2

4

6

1

1

ρ = 1

S′
est

Smeas

Least Squares
ρ = 0.62

SVE, 512 bit
LS NNLS

Baseline Fitted LOOCV Fitted LOOCV
Size 31

ρ 0.48 0.79 0.47 0.63 0.48
L2
avg 6.56 2.42 4.23 3.76 4.15

L2
max 13.99 8.15 15.30 9.00 9.31
f⊕ 0 0 0 0 0
f⊖ 0 0 2 0 0
tscl 31
tvec 14.72 14.72 16.16 14.72 14.72
topt 14.72

1 2 4 8 16

1
2

4

8

16

1

1

ρ = 1

S′
est

Smeas

Non-negative Least Squares
ρ = 0.48

Figure 4: Results of Leave One Out Cross Validation on training data for AVX, NEON, and
SVE hardware; plots show best fitted models, with black plot points marking the baseline,
colored plot points marking results of Leave One Out Cross validation

20

baseline to 0.53 (-9%). Nonetheless, the average L2 distances are still signifi-
cantly lower than baseline for both models (LS: -47%, NNLS: -43%). In terms
of mispredictions, neither model introduces new errors. They are consistent at
(f⊕ : 3, f⊖ : 3) for LS and (f⊕ : 9, f⊖ : 0) for NNLS, with both models still
mispredicting the same codes as previously. As a consequence, normalized exe-
cution times do not change and still present the results discussed in section 6.1:
the LS-fitted model exhibits a speedup, while the NNLS-fitted model presents
a slowdown.

On the NEON hardware, the correlation between estimated and measured
speedup drops below baseline for both models, from 0.76 to 0.62 (LS, -18%) and
0.37 (NNLS, -51%). Despite this drop in correlation, both models still outper-
form baseline in terms of L2 distances (LS: -70%, NNLS: -57%). Furthermore,
the baseline is exceeded in terms of number of mispredicted kernels and exe-
cution times. The LS-fitted model introduces one extra false positive and one
extra false negative prediction (f⊕ : 3, f⊖ : 2). Regardless of these two addi-
tional mispredictions, the normalized execution time is still 8% below baseline
at 43.49. For the NNLS-fitted model, one additional false negative is introdued
(f⊕ : 3, f⊖ : 1), which increases the normalized execution time slightly to 44.04
time units (7% below baseline).

On the SVE hardware, both models maintain the same correlation as the
baseline, while decreasing the average L2 distances. The LS-fitted model reduces
L2
avg from 6.56 to 4.23 (-35%), whereas the NNLS-fitted model reduces it to

4.15 (-37%). The L2
max distance increases for the LS-fitted model, however,

from 13.99 to 15.30 (+9%). This is due to two mispredictions that the model
introduces. These two false negatives further impact the overall execution time,
increasing it from the optimal execution time of topt = 14.72 to 16.16 time units
(+10%). The NNLS-fitted model, on the other hand, decreases L2

max to 9.31
(-33%) and does not produce any classification errors. It therefore achieves the
optimal runtime.

6.3. Feature Analysis
Having a fitted and validated model to predict code speedup, we can generate

insight into what features are the most important for an accurate prediction on a
specific target hardware. For this purpose, two different metrics were analyzed.
First, a greedy forward feature selection was performed to understand which
features are critical to reduce modeling error. Second, the obtained weights wi

were ranked, indicating which features contribute the most to code speedup and
which features impact the speedup negatively.

Greedy forward feature selection is an algorithm that ranks a given feature
set based on training data. It produces a list that indicates which features are
the most essential in reducing model error. The algorithm starts with an empty
feature set. It then selects the feature that produces the smallest model error
when the model is trained with only one feature. This denominates the single
best feature of the model. In its next iteration, the algorithm determines a
second feature, which, combined with the already selected single best feature,
produces the smallest model error for a model trained with two features. The

21

AVX2 NEON SVE
Rank Feature L2 Feature L2 Feature L2

1 getelementptr 18.20 getelementptr 7.61 icmp 26.13
2 shl 17.25 icmp 6.86 fadd 24.27
3 fptrunc 16.45 and 6.51 getelementptr 22.76
4 trunc 15.85 bitcast 6.25 phi 20.92
5 br 15.42 fmul 6.08 add 19.82
6 fdiv 15.10 or 5.98 LD_Widen 19.11
7 fmul 14.97 LD_VecReverse 5.89 br 18.31
8 lshr 14.86 sub 5.80 LD_Interleave 17.80

Full Model 8.19 3.54 17.36
Baseline 25.45 16.94 44.78

Table 2: Top eight features chosen by greedy forward feature selection on training data; error
metric is the Euclidean distance between modeled and measured speedups

algorithm then continues selecting features in this manner until a pre-determined
number of features is selected or the model error is not reduced further.

For our proposed cost model, we chose the L2 distance between estimated
and modeled speedup as the error metric. The results of the greedy forward
feature selection on our training data are listed in Table 2. It can be seen that
on all hardware platforms, the getelementptr feature is selected among the top
three most important features. It is a feature that is present in all of our training
data kernels, i.e. it has the best possible coverage. Furthermore, it is correlated
to the total number of memory accesses that are performed within the loop. The
same coverage applies to the No. 1 ranked feature on the SVE platform; the
icmp instruction is used within loops to determine if sufficient loop iterations
have been executed. A model utilizing only their respective single best feature
will already reduce the L2 distance by 29% on AVX2, by 41% on NEON, and by
42% on SVE platforms compared to their respective baselines. However, such
a model would still infer a significant number of mispredictions, impacting the
normalized execution time negatively.

On the SVE platform, the greedy forward feature selection algorithm further
determined that not all features might be critical to model the small training
data set of 31 kernels. The LS approch reduces its error with each additional
feature, although the L2 distance decreases by a mere 2% only when adding
more than 8 features. Even less features are needed for the NNLS approach.
Here, the algorithm is not able to reduce the error further by adding more than
4 features to the model (icmp, fadd, br, fcmp). We assume, however, that
more features will be needed in the future with more test cases (and hence a
higher feature coverage) and more accurate performance measurements when
the new hardware is available.

Besides investigating which features are critical to obtain a small error in the
model, it is also possible to analyze the feature values to understand how much
each contributes to the estimated speedup. This is possible due to the linear

22

AVX2 NEON SVE
Feature wi Feature wi Feature wi

fdiv 84.12 ST_VecReversed 15.41 icmp 169.37
icmp 37.42 ST_Interleave 7.70 LD_Interleave 59.21

⊕ fcmp 31.83 ST_Vector 5.92 LD_Widen 53.70
sub 15.38 fsub 5.85 fadd 42.11
fadd 12.13 ST_Scalarized 4.90 br 12.96

shl -42.91 urem -20.94 getelementptr -45.36
LD_VecReverse -23.53 call -8.93 add -43.05

⊖ fptosi -17.27 LD_Scalarized -6.13 phi -29.39
LD_Scalarized -13.25 shl -5.95 ST_Scalarized -21.92
br -10.90 sext -3.41 fmul -17.04

Table 3: Top five highest feature weights after fitting; positive weights contribute to speedup,
negative weights diminish speedup

nature of our cost model. As each feature is multiplied by its weight and summed
up to get the estimated speedup (see Section 5.1), the weights signify the impact
on speedup. In this context, a positive weight means that the instruction will
benefit from being vectorized; the higher the value, the higher the performance
gain due to vectorization. A negative weight indicates a code characteristic
that impacts the speedup gain, e.g. due to additional overhead. Such a feature
ranking can also be used to hint programmers what instructions to avoid on
certain hardware. Results for the AVX2, NEON, and SVE platforms are shown
in Table 3.

Interestingly, results vary significantly between the platforms. For positive
weights, i.e. those instructions that benefit from vectorization, the top five on
AVX2 are arithmetic instructions, while they are almost exclusively memory
store accesses on NEON. It shows that vectorization success depends on differ-
ent code characteristics on the two platforms. It also emphasizes the importance
to add code characteristics such as block composition/arithmetic intensity to the
cost model. For negative weights, i.e. those instructions that are not benefi-
cial to vectorize and might add overhead, results are more similar. On both
platforms, the feature representing a scalarized load (LD_SCALARIZED) can be
found. In this case, the impact on peformance stems from the inferred overhead
that is needed for vector assembly. On AVX2, the LD_VecReverse is another
load feature in the top five and is used for reverse loops. This is in line with our
observation in Section 5.2.

On the SVE platform, a different pattern can be observed. Most notably, the
getelementptr instruction is the instruction with the highest negative weight.
This instruction is added to LLVM bitcode for every memory access. The model
recognizes the negative impact memory instructions have on code vectorization
for such large vectors. Exceptions are those load instructions that can be found
on the list of instructions with high positive weights, e.g. LD_Interleave,

23

where a speedup can be obtained due to the model compensating the penalty
imposed by the getelementptr feature. A similar pattern can be deducted for
control flow. The phi instruction is weighted negatively, i.e. branching within
vectorized code is considered harmful. However, this does not apply to the icmp
instruction, which is used to determine the end of a loop, but instructions such
as fcmp that are used for if-else-statements within loop bodies.

The feature analysis highlights the portability of the approach: despite our
model being based on high-level features from LLVM bitcode, our proposed
methodology is able to distinguish those code features that impact vectorization,
independent of the target SIMD ISA.

7. Conclusion

Compiler optimizations, such as vectorization, rely on cost modeling to assess
the benefit of code transformations. To understand how accurate these cost
models are, we analyzed the vectorization profitability prediction in LLVM’s
and GCC’s auto-vectorizers. By comparing the correlation between predicted
and measured speedup on more than 85 kernels, we are able to show that the
current assessment over- estimates vectorization benefits. This leads to a weak-
to-moderate correlation between estimated and actual speedup, mispredictions,
and a loss in execution time.

We therefore propose a novel cost modeling approach that is platform inde-
pendent and improves the state of the art of LLVM’s performance prediction.
Based on LLVM’s intermediate representation, refined memory access features,
and basic block composition, the resulting cost model is able to improve the pre-
diction accuracy with respect to all three metric categories: precision, classifica-
tion, and impact. Our modeling approach is independent of the data type used
and can, therefore, be applied to programs using smaller data types and mixed
precision techniques. Tested on three hardware platforms (based on AVX2,
NEON and SVE SIMD ISAs), the average Euclidean distance between the pre-
dicted and measured speedups is reduced by at least 65%. At the same time,
the number of mispredictions decreases from 13 to 6 on AVX2 and from 17 to
5 on the NEON hardware, while maintaining an error-free prediction on the
SVE platform. Consequently, the normalized execution time of the validation
dataset is reduced by 3% on AVX2 and 9% on NEON.

By analyzing all features and their weights, we are furthermore able to gen-
erate platform specific insight. Due to the linear nature of our model, a feature
correlates directly with its impact on vectorization, be it positive or negative. On
our test platforms, for example, we are able to identify that on AVX2, arithmetic
instructions such as fdiv or icmp benefit the most from vectorization, while the
same is true for store instructions on NEON. On the SVE hardware, we can
observe that memory instructions in general impact performance negatively,
with the exception of certain load instructions, e.g. LD_Interleave.

In future work, we would like to apply our cost model to other optimization
passes, such as the SLP vectorizer, to enable a single aligned cost model infras-
tructure in the compiler. Regarding vector length agnostic architectures, it will

24

also become critical to understand if a transformation will become detrimen-
tal to speedup with larger vector lengths. An accurate cost model is therefore
needed to correctly predict such vector length limits, which can then be enforced
via runtime checks or enforcing smaller vector lengths. A further analysis will
be needed, however, as soon as hardware is available.

References

[1] A. Pohl, B. Cosenza, B. H. H. Juurlink, Portable cost modeling for auto-
vectorizers, in: 27th IEEE International Symposium on Modeling, Analy-
sis, and Simulation of Computer and Telecommunication Systems, MAS-
COTS 2019, Rennes, France, October 21-25, 2019, 2019, pp. 359–369.
doi:10.1109/MASCOTS.2019.00046.
URL https://doi.org/10.1109/MASCOTS.2019.00046

[2] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Prémillieu, A. Reid, A. Rico,
P. Walker, The ARM scalable vector extension, IEEE Micro 37 (2) (2017)
26–39. doi:10.1109/MM.2017.35.
URL https://doi.org/10.1109/MM.2017.35

[3] A sneak peak into SVE and VLA programming,
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-
programming, accessed: 2020-02-02.

[4] A-Profile Architecture Specifications,
https://developer.arm.com/products/architecture/a-profile/docs,
accessed: 2020-02-02.

[5] S. Maleki, Y. Gao, M. J. Garzarán, T. Wong, D. A. Padua, An Evaluation
of Vectorizing Compilers, in: Proceedings of the 2011 International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’11,
IEEE Computer Society, 2011, pp. 372–382. doi:10.1109/PACT.2011.68.
URL http://dx.doi.org/10.1109/PACT.2011.68

[6] M. J. Wolfe, High Performance Compilers for Parallel Computing, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[7] K. Kennedy, J. R. Allen, Optimizing Compilers for Modern Architectures:
A Dependence-based Approach, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[8] J. Shin, M. Hall, J. Chame, Superword-Level Parallelism in the Presence
of Control Flow, in: Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’05, IEEE Computer Society, 2005,
pp. 165–175. doi:10.1109/CGO.2005.33.
URL http://dx.doi.org/10.1109/CGO.2005.33

25

https://doi.org/10.1109/MASCOTS.2019.00046
https://doi.org/10.1109/MASCOTS.2019.00046
https://doi.org/10.1109/MASCOTS.2019.00046
https://doi.org/10.1109/MASCOTS.2019.00046
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/products/architecture/a-profile/docs
http://dx.doi.org/10.1109/PACT.2011.68
http://dx.doi.org/10.1109/PACT.2011.68
https://doi.org/10.1109/PACT.2011.68
http://dx.doi.org/10.1109/PACT.2011.68
http://dx.doi.org/10.1109/CGO.2005.33
http://dx.doi.org/10.1109/CGO.2005.33
https://doi.org/10.1109/CGO.2005.33
http://dx.doi.org/10.1109/CGO.2005.33

[9] P. Wu, A. E. Eichenberger, A. Wang, P. Zhao, An integrated simdization
framework using virtual vectors, in: Proceedings of the 19th Annual Inter-
national Conference on Supercomputing, ICS ’05, ACM, New York, NY,
USA, 2005, pp. 169–178. doi:10.1145/1088149.1088172.
URL http://doi.acm.org/10.1145/1088149.1088172

[10] Z. Yuanyuan, Z. Rongcai, An open64-based cost analytical model in auto-
vectorization, in: 2010 International Conference on Educational and In-
formation Technology, Vol. 3, 2010, pp. V3–377–V3–381. doi:10.1109/
ICEIT.2010.5608348.

[11] D. Nuzman, I. Rosen, A. Zaks, Auto-vectorization of interleaved data
for SIMD, in: Proceedings of the ACM SIGPLAN 2006 Conference
on Programming Language Design and Implementation, Ottawa, On-
tario, Canada, June 11-14, 2006, 2006, pp. 132–143. doi:10.1145/
1133981.1133997.
URL http://doi.acm.org/10.1145/1133981.1133997

[12] U. Bondhugula, A. Hartono, J. Ramanujam, P. Sadayappan, A practical
automatic polyhedral parallelizer and locality optimizer, in: Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, ACM, New York, NY, USA, 2008, pp. 101–
113. doi:10.1145/1375581.1375595.
URL http://doi.acm.org/10.1145/1375581.1375595

[13] K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, I. Rosen, Polyhedral-model
guided loop-nest auto-vectorization, in: Proceedings of the 2009 18th Inter-
national Conference on Parallel Architectures and Compilation Techniques,
PACT ’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 327–
337. doi:10.1109/PACT.2009.18.
URL https://doi.org/10.1109/PACT.2009.18

[14] K. Stock, L. Pouchet, P. Sadayappan, Using Machine Learning to Improve
Automatic Vectorization, TACO 8 (4) (2012) 50:1–50:23.

[15] E. Park, L.-N. Pouchet, J. Cavazos, A. Cohen, P. Sadayappan, Predic-
tive modeling in a polyhedral optimization space, in: Proceedings of the
9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’11, IEEE Computer Society, Washington, DC, USA,
2011, pp. 119–129.
URL http://dl.acm.org/citation.cfm?id=2190025.2190059

[16] E. Park, J. Cavazos, L. Pouchet, C. Bastoul, A. Cohen, P. Sadayappan, Pre-
dictive Modeling in a Polyhedral Optimization Space, International Journal
of Parallel Programming 41 (5) (2013) 704–750.

[17] A. Trouvé, A. J. Cruz, D. B. Brahim, H. Fukuyama, K. J. Murakami, H. A.
Clarke, M. Arai, T. Nakahira, E. Yamanaka, Predicting vectorization prof-
itability using binary classification, IEICE Transactions 97-D (12) (2014)

26

http://doi.acm.org/10.1145/1088149.1088172
http://doi.acm.org/10.1145/1088149.1088172
https://doi.org/10.1145/1088149.1088172
http://doi.acm.org/10.1145/1088149.1088172
https://doi.org/10.1109/ICEIT.2010.5608348
https://doi.org/10.1109/ICEIT.2010.5608348
http://doi.acm.org/10.1145/1133981.1133997
http://doi.acm.org/10.1145/1133981.1133997
https://doi.org/10.1145/1133981.1133997
https://doi.org/10.1145/1133981.1133997
http://doi.acm.org/10.1145/1133981.1133997
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1109/PACT.2009.18
https://doi.org/10.1109/PACT.2009.18
http://dl.acm.org/citation.cfm?id=2190025.2190059
http://dl.acm.org/citation.cfm?id=2190025.2190059
http://dl.acm.org/citation.cfm?id=2190025.2190059
https://doi.org/10.1587/transinf.2014EDP7190
https://doi.org/10.1587/transinf.2014EDP7190

3124–3132. doi:10.1587/transinf.2014EDP7190.
URL https://doi.org/10.1587/transinf.2014EDP7190

[18] A. Trouvé, A. J. Cruz, K. J. Murakami, M. Arai, T. Nakahira, E. Ya-
manaka, Guide automatic vectorization by means of machine learning:
A case study of tensor contraction kernels, IEICE Transactions on In-
formation and Systems E99.D (6) (2016) 1585–1594. doi:10.1587/
transinf.2015EDP7440.

[19] C. Cummins, P. Petoumenos, Z. Wang, H. Leather, End-to-end deep
learning of optimization heuristics, in: 26th International Conference on
Parallel Architectures and Compilation Techniques, PACT 2017, Port-
land, OR, USA, September 9-13, 2017, 2017, pp. 219–232. doi:10.1109/
PACT.2017.24.
URL https://doi.org/10.1109/PACT.2017.24

[20] C. Mendis, A. Renda, S. P. Amarasinghe, M. Carbin, Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural net-
works, in: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, 2019,
pp. 4505–4515.
URL http://proceedings.mlr.press/v97/mendis19a.html

[21] J. Shin, J. Chame, M. W. Hall, Compiler-controlled caching in superword
register files for multimedia extension architectures, in: Proceedings of the
2002 International Conference on Parallel Architectures and Compilation
Techniques, PACT ’02, IEEE Computer Society, Washington, DC, USA,
2002, pp. 45–55.
URL http://dl.acm.org/citation.cfm?id=645989.674318

[22] V. Porpodas, T. M. Jones, Throttling Automatic Vectorization: When Less
is More, in: Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT), PACT ’15, IEEE Computer Soci-
ety, 2015, pp. 432–444. doi:10.1109/PACT.2015.32.
URL https://doi.org/10.1109/PACT.2015.32

[23] C. Mendis, S. P. Amarasinghe, goSLP: Globally optimized superword level
parallelism framework, PACMPL 2 (OOPSLA) (2018) 110:1–110:28. doi:
10.1145/3276480.
URL https://doi.org/10.1145/3276480

[24] I. Rosen, D. Nuzman, A. Zaks, Loop-aware SLP in GCC, in: GCC Devel-
opers Summit, 2007.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., The gem5 Sim-
ulator, ACM SIGARCH Computer Architecture News 39 (2) (2011) 1–7.

27

https://doi.org/10.1587/transinf.2014EDP7190
https://doi.org/10.1587/transinf.2014EDP7190
https://doi.org/10.1587/transinf.2015EDP7440
https://doi.org/10.1587/transinf.2015EDP7440
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
https://doi.org/10.1109/PACT.2017.24
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html
http://dl.acm.org/citation.cfm?id=645989.674318
http://dl.acm.org/citation.cfm?id=645989.674318
http://dl.acm.org/citation.cfm?id=645989.674318
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1109/PACT.2015.32
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480
https://doi.org/10.1145/3276480

[26] gem5 SVE Branch, https://gem5.googlesource.com/arm/gem5/+/sve/
beta1, accessed: 2019-04-05.

[27] T. Yoshida, Fujitsu high performance CPU for the Post-K Computer, in:
Hot Chips 30 Symposium (HCS), Series Hot Chips, Vol. 18, 2018.

[28] A. Pohl, M. Greese, B. Cosenza, B. Juurlink, A Performance Analysis of
Vector Length Agnostic Code, in: Proceedings of the 2018 International
Conference on High Performance Computing & Simulation (HPCS), 2019.

[29] Z. Chen, Z. Gong, J. J. Szaday, D. C. Wong, D. Padua, A. Nicolau, A. V.
Veidenbaum, N. Watkinson, Z. Sura, S. Maleki, et al., Lore: A loop repos-
itory for the evaluation of compilers, in: 2017 IEEE International Sympo-
sium on Workload Characterization (IISWC), IEEE, 2017, pp. 219–228.

[30] L.-N. Pouchet, U. Bondhugula, et al., The polybench benchmarks, URL:
http://web. cs. ucla. edu/pouchet/software/polybench (2017).

[31] T. Oliphant, A Guide to NumPy, Vol. 1, Trelgol Publishing USA, 2006.

[32] T. Oliphant, SciPy: Open source scientific tools for Python, Computing in
Science and Engineering 9 (2007) 10–20.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Ma-
chine learning in Python, Journal of Machine Learning Research 12 (Oct)
(2011) 2825–2830.

28

https://gem5.googlesource.com/arm/gem5/+/sve/beta1
https://gem5.googlesource.com/arm/gem5/+/sve/beta1

	Introduction
	Related Work
	Cost Modeling in Auto-Vectorizers
	Cost Modeling in LLVM
	Cost Modeling in GCC
	Cost Modeling for SVE in GCC

	Baseline Accuracy Analysis
	Setup
	Accuracy Metrics
	Results
	Intel AVX2
	ARM NEON
	ARM SVE

	Improving the Modeling
	Targeting Speedup Instead of Cost
	Feature Representation and Extraction
	Enhancing the Training Data
	Dimensionality Reduction for SVE Hardware

	Experimental Results
	Cost Model Fitting
	Model Validation
	Feature Analysis

	Conclusion

