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Abstract
Many applications provide inherent resilience to some amount

of error and can potentially trade accuracy for performance

by using approximate computing. Applications running on

GPUs often use local memory to minimize the number of

global memory accesses and to speed up execution. Local

memory can also be very useful to improve the way approxi-

mate computation is performed, e.g., by improving the qual-

ity of approximation with data reconstruction techniques.

This paper introduces local memory-aware perforation tech-

niques specifically designed for the acceleration and approx-

imation of GPU kernels. We propose a local memory-aware

kernel perforation technique that first skips the loading of

parts of the input data from global memory, and later uses

reconstruction techniques on local memory to reach higher

accuracy while having performance similar to state-of-the-

art techniques. Experiments show that our approach is able

to accelerate the execution of a variety of applications from

1.6× to 3×while introducing an average error of 6%, which is
much smaller than that of other approaches. Results further

show how much the error depends on the input data and

application scenario, the impact of local memory tuning and

different parameter configurations.

CCS Concepts • Computing methodologies → Graph-
ics processors; • Software and its engineering→ Software
notations and tools;

Keywords approximate computing, GPU, kernel perfora-

tion
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1 Introduction
Approximate Computing (AC) exploits the gap between the

accuracy provided by a system and the accuracy required

by an application. Many applications are resistant to some

amount of error and earlier works in this field have proven

that there is potential for significant improvements in terms

of execution time or energy consumption if a small amount

of error can be accepted [3]. The rationale behind AC is

that an application can provide acceptable output quality

even though the system executing the application was in-

exact in some way. This property is shared by applications

from many domains, including signal processing, machine

learning, audio and video processing [20, 21]. Research of

approximate techniques has also been conducted from many

different perspectives: related work ranges from software-

based approaches [10, 15, 19] and programming language

support [7, 12, 17, 24] to compiler-based approaches [16, 19]

and hardware-based techniques [18].

Applications suited for acceleration by AC provide inher-
ent application resilience [3], i.e., they can produce acceptable

results despite some of their underlying computations being

incorrect or approximate. For example, in a photo, pixels

that are in an adjacent location potentially have similar val-

ues. This property is well-known and exploited by many

applications, e.g., by image/video and data compression. Ap-

plications in the context of digital audio signals created by

sampling continuous analog signals already introduce some

amount of error because of quantization noise. This and sim-

ilar contexts, therefore, are already required to deal with

some amount of error.

As one of the goals of AC is to improve performance, sev-

eral implementations have combined the high-throughput of

massively parallel architectures such as GPUs with approxi-

mate computing techniques [5, 8, 15, 16, 23]. The GPU is a

very interesting architecture for the application of such tech-

niques. GPU programming models expose different types of

memory, which are explicitly selected by the programmer.

On the one hand, there is a large amount of global memory
1
.

When accessing global memory, a fairly high latency has

to be accepted. While this latency can be hidden partly by

scheduling a different batch of threads, in fact many applica-

tions are memory bound. On the other hand, there is a small

amount of local memory, which is accessed with very low

1
Throughout this paper we use OpenCL terminology. In CUDA terminology

work groups are also known as thread blocks, and local memory is also known
as shared memory.

https://doi.org/10.1145/3168814
https://doi.org/10.1145/3168814
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latency. Additionally, local memory is shared by all threads

in a work group.

In previous work, GPU applications have been accelerated

by perforating the execution of loops [15, 19]. However, these

works are limited in two aspects. First, the acceptable error
is chosen to be 10% on average. That is unacceptable for

many applications that cannot tolerate such high amount of

error. Therefore, the potential impact of such techniques is

limited. Second, most of the used benchmark applications

do not use local memory. Among the few applications that

actually do use local memory, there is no exploitation of local

memory for the approximation technique. This means that

existing approximation techniques do not take the model of

the specificity of the GPU memory model into account.

This paper presents a novel approach to perform loop

perforation on GPUs, namely kernel perforation, which is

aware of the GPU memory hierarchy and makes use of the

fast local memory in order to achieve higher accuracy with

the same performance. The central idea of our approach is to

savememory accesses by approximating reads from the input

buffers of the kernel. Being aware of the GPUmemorymodel,

our approach focuses on (1) loading only few data points

from (the slower) global memory while (2) using the (faster)

local memory to cache adjacent data points and (3) improve

accuracy with a local data reconstruction technique. Local

reconstruction techniques attempt to reconstruct the input

value out of a sparse set of globally-fetched data points, thus

exploiting inherent application resilience of the applications.
The approach also extends existing work on perforation also

with novel memory patterns and an analysis of the accuracy

on six applications with different input data.

The contributions of this paper are:

• a novel local memory-aware approximation approach

for OpenCL kernels based on loop perforation (ker-
nel perforation) that approximates the input data of

GPU applications by reducing the amount of data

loaded from global memory and reconstructing a high-

accuracy approximation with a local reconstruction

technique;

• a set of local reconstruction techniques that work on

local memory and efficiently combine the sparse data

fetched by global perforation schemes while consis-

tently improving the accuracy of the approximation;

• experimental results on six benchmarks with different

input data and different combination of parameters

(perforation schemes, reconstruction techniques, local

work-group size), where we show speedups of 1.6× to

3× while maintaining a moderate amount of error on

an AMD FirePro W5100 GPU.

2 Related Work
Approximate computing has become a hot topic with appli-

cations in many different fields and different approaches [4,

6, 8, 11, 24]. A thorough overview can be found in the survey

paper of Mittal [14].

Lipasti et al. [9] presented a hardware-based approach

called Load Value Prediction, which skips the execution stall

due to a cache miss by predicting the value based on local-

ity. However, if the error of a predicted value is too large a

rollback is necessary. Load Value Approximation [11] over-

comes this limitation by not verifying the predicted values,

thus not involving the burden of rollbacks.

Yazdanbakhsh et al. [25] presented a similar approach for

GPUs that focuses on memory bandwidth, instead of the sole

latency. A fraction of cache misses is approximated without

any checking for the quality of the predictions. The predictor

utilizes value similarity across threads. The programmer

must specify which loads can be approximated and which

are critical. The fraction to be approximated is used as a knob

to control the approximation error.

Several related works use software-based approaches for

leveraging application’s resilience to some amount of error.

An analysis of inherent application resilience has been con-

ducted by Chippa et al. [3]. They presented a framework for

Application Resilience Characterization (ARC) that partitions

an application into resilient and sensitive parts, and proposed

approximation models to analyze the resilient parts.

Loop perforation has been presented by Sidiroglou et

al. [19]. While many applications are designed to trade-off

accuracy for performance using domain-specific techniques,

loop perforation is a generalized approximation technique

that can be applied in a variety of contexts. Once critical

(tunable) loops are identified, the number of iterations of

such loops can be decreased. By limiting the amount of error

of the final result to 10% at maximum, a typical speedup of

2× can be achieved.

Li et al. [8] introduced a GPU-specific approach based on

the Special Function Unit (SFU) commonly available in, e.g.,

NVIDIA GPUs, which provides acceleration for transcen-

dental functions. A tunable approximation is achieved by

dividing the work into warps that execute the accurate func-

tions and warps that execute the SFU-based approximate

functions.

Samadi et al. [16] presented Sage, a framework consisting

of a compilation step in which a kernel is optimized using

approximation techniques and a runtime system that en-

sures that the target output quality criteria are met. They

employed three GPU-specific optimization techniques: dis-

carding of atomic operations, data packing/compression, and

thread fusion. Even though Sage takes into account GPU-

specific limitations, it does not exploit the compute unit’s

local memory to benefit from the low latency and shared

memory.

Paraprox [15] is a framework for transparent and au-

tomated approximation of data-parallel applications. Input

to the framework is an OpenCL or CUDA kernel, which
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is parametrized by applying different approximation tech-

niques, depending on the detected data-parallel pattern. A

runtime helper is used to choose those kernel parameters

that meet the specified output quality. For an error budget

of 10% they reported an average performance gain of 2.7×.
Mitra et al. [13] recognized that there are different phases

in many applications, each with very different sensitivity

to approximation. They presented a framework that detects

these phases in applications and searches for specific approx-

imation levels for each of the phases. For an error budget of

5% they report a speedup of 16%. By allowing for an error

budget of 20% the speedup increases to 72% on average.

Lou et al. [10] presented image perforation, a technique

specifically designed for accelerating image pipelines. By

transforming loops so that they skip certain samples that

are particular expensive to calculate speedups of 2× up to

10× were reported. Subsequent pipeline stages rely on the

presence of these samples, and they can be reconstructed

using different methods (nearest-neighbor, Gaussian and

multi-linear interpolation). The pipeline can be modified

by a storage optimization that replaces accesses to skipped

samples with on-demand reconstruction code.

3 Overview
This paper introduces a novel approximation technique that

is specifically designed to approximate general-purpose GPU

kernels. The proposed approach extends state-of-art approx-

imation techniques such as the row-/column-based schemes

used in Paraprox [15] by exploiting the GPU’s fast local

memory to deliver more accurate solutions.

Input

buffer

Kernel

execution

Output

buffer

(a) Accurate GPU application

Input

buffer

Data per-

foration

Data

recon-

struction

Kernel

execution

Output

buffer

(b) Our approach

Figure 1. Accurate GPU application and local memory-

aware kernel perforation approach.

In typical GPU applications, as depicted in Figure 1a, a

GPU kernel first fetches data from the input buffer in global

memory, then it performs its computations, and finally it

writes the result to the output buffer in global memory. The

penalty for accessing the global memory is in general very

high, although it can be hidden to some extent by the mas-

sively parallel architecture of the GPU and its scheduler. A

way to improve the performance of GPU kernels is to make

use of fast local memory, whose access latency is significantly

smaller than the one for global memory.

The rationale behind our approach is that fast local mem-

ory can also be exploited for more accurate approximation.

Figure 1b shows how our local memory-aware kernel perfo-

ration approach extends the original application with two ad-

ditional steps: a data perforation phase that fetches a part of

the input data; a data reconstruction phase that reconstructs

the missing data elements and works on local memory.

In Section 4 we describe how a kernel is perforated and

what part of the input data is selected to be fetched from

memory. The successive step implementing the reconstruc-

tion phase is described in Section 5. Experimental evaluation

and discussion are presented in Section 6. Finally, we con-

clude our work in Section 7.

4 Kernel Perforation
Sidiroglou et al. [19] introduced loop perforation, an approxi-

mation technique that improves the performance of a loop

execution by skipping some iterations. Loop perforation has

been originally applied to sequential code and can be eas-

ily parametrized through tunable loops in order to trade

accuracy for performance.

In this work, we apply perforation to parallel OpenCL

kernels: a loop is a kernel whose iterations correspond to

OpenCL work-items. Therefore, we apply kernel perforation
to a parallel kernel instead of a sequential loop.

4.1 From Loop to Kernel Perforation
When applying perforation to a kernel, there are different

aspects to consider. While loop perforation works at loop

iteration level, our perforation approach focuses on the data

(e.g., buffers) used by a kernel because memory accesses are

an important component of GPU performance.

In particular, we distinguish between input approximation
and output approximation: input approximation is the process

of approximating data on the input of a GPU kernel while

output approximation does the opposite, i.e., approximating

data on the output of a GPU kernel.

To illustrate this concept, consider the following accurate

program (we use loops for simplicity, but techniques apply

to kernels similarly):

for(i = 0; i < n; i++) {

output[i] = calc(input[i]);

}

For every input element the function calc is called. Its result
is written to the output element. In this example, the function

calc requires the i-th input data element and the loop is

executed n times.

By applying loop perforation, e.g., every three iterations,

we are actually approximating the output array, which con-

tains the results of the computations. Therefore, we are per-

forming an output perforation of the loop.

for(i = 1; i < n; i += 3) {

output[i] = calc(input[i]);
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output[i+1] = output[i];

output[i+2] = output[i];

}

The output is calculated for the i-th element, while it is ap-

proximated for output[i+1] and output[i+2]. The loop is

executed
n
3
times. Approaches such as Paraprox are output

approximation, because the output of the kernel execution

is approximated.

While output approximation grants high performance

improvements, it has two limitations: It usually introduces a

very high error, and it does not take into account the possible

memory reuse of the input data. A way to overcome this

problem is to implement the data perforation in the input

data of the loop, e.g.:

for(i = 0; i < n; i += 3) {

x0 = input[i]; // data perforation

x2 = input[i+2];

x1 = (x0+x2)/2; // data reconstruction

output[i] = calc(x0);

output[i+1] = calc(x1);

output[i+2] = calc(x2);

}

In this example, first x0 and x2 are loaded from the input

array. Then x1 is approximated by calculating the linear

interpolation between x0 and x2. Finally, program execution

continues and the result for the input data at position i, i +
1, i + 2 is calculated analogous to the accurate program.

The approximation schemes presented in this paper per-

form input approximations, where the input buffers are ap-

proximated before they serve as an input to the OpenCL

kernel computation.

While this is a simple one-dimensional application of

the approach, it can be easily extended to two- and three-

dimensional kernels, where perforation is performed, e.g.,

at row or column level. Two-dimensional approximation

schemes are further described in Section 4.3.

4.2 Local Input Perforation
The approach of input approximation is motivated by two

observations: Many applications are inherently resilient to

the input as well as the output and, therefore, they can toler-

ate small errors. Memory accesses on GPUs have a very long

latency, and approximation of the input may take advantage

of low-latency local memory to improve the approximation.

Most real-life data contain redundancy, for example there

is a spatial locality in digital images. Additionally, this data

often contains noise, (e.g., quantization noise), and hence

is inaccurate. Such data is the input to many applications.

Input approximation works by skipping the loading of some

of the input data. If the input data is two-dimensional, e.g.,

an image, a possible input perforation scheme may skip

every other row. Figure 2 shows an example of row-based

approximation. The error introduced by data perforation

(a) original (b) perforated (c) approximated

Figure 2. Original, perforated and approximated data [22].

is visible as black lines in Figure 2b; Figure 2c shows the

input data reconstruction. In general, input approximation

can be a suitable acceleration technique for any application

that processes data with redundancy and is resilient to some

amount of error in its input data. This is an advantage over

output approximation techniques that require spatial locality

in the output data. Although it has been shown that output

approximation can be used for many applications, this is a

conceptual limitation.

The usage of local memory to prefetch data from global

memory is a well-known technique to accelerate GPU ker-

nels. Applications’ execution time usually benefits from the

usage of local memory if there is significant reuse of data
across threads. Data reuse means the data loaded by a thread

is also used by other threads which in turn also load data.

In the OpenCL programming model, this is usually im-

plemented using the local memory, which is shared among

all threads in a work group. On GPUs, the latency of local

memory is far lower compared to the latency of accessing

the global memory, but its size is rather limited. Therefore,

we use the local memory to implement the steps (Ia) data

perforation and (Ib) data reconstruction shown in Figure 1b.

4.3 Perforation Schemes
Paraprox first presented an implementation of kernel perfo-

ration [15] by detecting different data-parallel access schemes

and generating new kernels that use scheme-specific ap-

proximation techniques. For instance, when a stencil ac-

cess scheme is detected, three approximated kernel versions

are generated, each implementing a different approxima-

tion scheme. The scheme determines which elements are

computed and which elements are to be approximated, and

the approximation of elements is accomplished by copying

adjacent (calculated) values. Figure 3 shows a visual repre-

sentation of the schemes on a 2D kernel. Colored elements

(a) Row (b) Column (c) Center

Figure 3. Approximation schemes used in Paraprox.
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are calculated and white elements are copied from adjacent

calculated values. Scheme (a) calculates a row of results and

uses this row to approximate the adjacent rows on the top

and on the bottom of this row. Scheme (b) proceeds analo-

gous but with columns instead. The most aggressive scheme

is (c), which only calculates the value in the center and ap-

proximates all adjacent values.

In Paraprox, approximation is accomplished by copying

the calculated result to adjacent result values. As described

later in Section 5, we introduce more accurate ways to recon-

struct these values with different reconstruction techniques.

The reported speedup for these schemes ranges frommore

than 1.7× for ConvolutionSeparable to more than 3× for

Gaussian and Mean. The speedup can be mainly attributed

to a reduced number of global memory accesses, as the ap-

plications contain only a few multiplications and additions

for each calculated output element. However, in the case

of the Gaussian filter, a 3 × 3 filter kernel leads to 9 data

elements read. If we assume that scheme (c) is applied, every

third data element in x and y direction is calculated and the

remaining data elements are approximated. Nonetheless, ev-

ery data element is loaded once from global memory, as the

calculation of the not approximated data elements depend on

them (assuming a 3×3-sized filter kernel). Finally, Paraprox

assumes a very high maximum error of 10%.

4.4 GPU Perforation Schemes and Halos
The implementation of an input perforation scheme deter-

mines which data is loaded from global memory to local

memory. Three important aspects are considered. First, the

scheme needs to match with the memory architecture in

a way that preferably no data that is loaded from memory

is discarded by the scheme. For GPUs the memory access

granularity depends on different factors but in general is at

least 32 bytes. Second, the scheme also needs to match the

applications input data structure. For example, if the input

data contains a line-shaped structure, skipping lines while

loading the data increases the error much more than skip-

ping, e.g., columns. And third, the scheme needs to take into

account the organization of threads in work groups.

We present two types of schemes that overcome such

limitations. Both of them assume that the input data contains

spatial locality, which means that adjacent data elements

have a high similarity. This is often the case for video or

image data. The approach is not limited to image processing

applications. Furthermore, the redundancy does not need to

come from spatial locality. Any input data that contains a

known redundancy structure can be used as a template for

designing a perforation scheme.

From a statistical point of view, a scheme with randomly

selected data elements to be approximated would be the

best choice, because then the error due to approximation

is equally distributed over the input data. Furthermore, a

random scheme is less likely to hide structures in the input

data. However, such a random scheme would interfere with

the way memory is accessed on a GPU, where whole lines

of memory are fetched in one transaction.

Row Approximation Scheme Fetching one data element

from memory also induces the fetching of data elements

in the same row. As global memory accesses are affected

by a relatively long latency, it is clear that any data that is

actually fetched from global memory should also be used to

improve the approximation. Our row approximation scheme

(Figure 4) skips the loading of rows in a work group tile and,

therefore, adjacent elements in a row are always used. As

in adjacent work groups the same approximation scheme is

applied, the schemes match each other.

(a) Row scheme 1 (b) Row scheme 2

Figure 4. Row approximation scheme.

Stencil approximation scheme Figure 5 shows a stencil

approximation scheme for a tile size of 6 × 6 and a stencil

kernel size of 3 × 3. To compute the accurate result, an extra

row on top and on the bottom as well as an extra column

left and right need to be fetched additionally. This approxi-

mation scheme only fetches the block in the center (drawn

in blue) and approximates the extra data elements based on

their neighbors. The data elements on the boundaries have

influence on a smaller number of the stencil calculations

than data elements, that are not on the border. This property

is leveraged by the approximation scheme.

Figure 5. Stencil approximation scheme.

5 Reconstruction
By skipping elements in the input data, an error is intro-

duced. The purpose of the reconstruction step is to minimize

this error. Such reconstructions may use very different tech-

niques, depending on the type of application and the input

that is targeted. The simplest approach is to approximate

the missing elements by copying the values of adjacent data
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elements. Depending on the data access scheme, that deter-

mines which elements from the input data is needed for the

calculation of one element in the output data, this approach

can be quite effective.

In general, the usage of local memory can accelerate the

execution of applications, if there is data reuse across differ-

ent threads. By using local memory, which is shared among

all threads in a work group, data reuse can be accomplished.

This approach is well-known and can be considered a stan-

dard optimization technique for GPU applications.

However, if output approximation is applied to an ap-

plication that already uses local memory and there is data

reuse, the advantage of the approximation is very small, as

the whole input data needs to be loaded (because of data

reuse) and there is global memory access that can be saved
by approximating it.

An example of this situation can be taken from Paraprox:

Consider a filter kernel size of 3× 3 and the proposed stencil

approximation techniques that skip the calculation of either

every other row, every other column, or both. The last option

calculates the result for only 1 out of 9 elements in the output

data, as Figure 3 shows. However, all data elements in the

input data are accessed at least once. If we assume that local

memory is used to prefetch the data plus the surrounding

elements, the number of approximated memory accesses is

zero and hence the speedup, that was due to approximated

global memory accesses, declines.

5.1 Reconstruction Techniques
After loading the incomplete data to the local memory (data

perforation), the missing data needs to be reconstructed.

Ideally, a perfect reconstruction of the missing data is de-

sired. However, as there is information missing, a perfect

reconstruction is not possible. Therefore, we aim to mini-

mize the error. For the reconstruction different options are

possible. In this work we compare two different types of

data reconstruction techniques on the sparsely fetched data:

nearest-neighbor interpolation and linear interpolation.

The data reconstruction method depends on the approxi-

mation scheme that was used and not all combinations are

possible.

Nearest-neighbor Interpolation A straight-forward ap-

proach for the completion of the perforated data is nearest-

neighbor interpolation. Data elements that were not loaded

are approximated by picking the nearest value that was

loaded as a replacement value.

Linear Interpolation Another well-known technique is

linear interpolation. For this method, it is necessary that the

element to be approximated has adjacent elements on both

sides. This requirement is not always true, see for example

the edges of the stencil scheme in Figure 5. In this case we

employ nearest-neighbor interpolation.

6 Experimental Evaluation
To evaluate our approach, we have reproduced the approx-

imation schemes used by Paraprox (as described in Sec-

tion 4.3) and compared them with our approach in terms of

error as well as speedup. Furthermore, we extended Para-

prox’s schemes with a more aggressive perforation scheme

that approximates 4 instead of 2 rows or columns. We apply

their approach to a variety of benchmarks. However, we are

not able to reproduce the numbers that were reported in

the original work. This can be explained by the usage of dif-

ferent hardware and different benchmark implementations.

Moreover, some benchmarks are more sensitive to different

input data, as we show in Figure 6.

Our results were conducted on an AMD FirePro W5100

GPU with 3.5 GB memory using OpenCL driver AMD-APP

version 17.10-414273 supporting OpenCL version 1.2.

Table 1. Details of the applications that have been used in

the evaluation.

Application Domain Error Metric

Gaussian Image processing Mean relative error

Median Medical imaging Mean relative error

Hotspot Physics simulation Mean relative error

Inversion Image processing Mean relative error

Sobel Image processing Mean error

6.1 Benchmarks
We manually applied our approach to six benchmarks. An

overview can be found in Table 1. For all except one bench-

mark we use the mean relative error (MRE) as metric. The

MRE is determined by calculating the difference of result

and the value and then dividing by the true value:
xtrue−xtest

xtrue
.

However, when xtrue is zero or close to zero the MRE is ei-

ther very high or undefined. The Sobel3/Sobel5 applications

are particularly prone to such situations. Therefore, we opt

to use the mean error as metric for these two applications

instead, which does not suffer from this limitation. Input and

output are grayscale images sized 1024 × 1024 for Gaussian,

Inversion, Median and Sobel3/Sobel5. For Hotspot we

used the 1024 sized input data sets provided by Rodinia [2].

The Gaussian filter is a well-known low-pass filter. Low-

pass filtering has many applications, e.g., in electronics and

signal processing. A reduction in noise and detail is an impor-

tant preprocessing step in image processing, e.g., for building

edge detection applications, as they are particularly sensitive

to noise. The Gaussian has data-reuse across threads and

therefore benefits from the use of local memory in general.

The filter kernel size is 3 × 3.

The Inversion filter is an application that computes the

digital negative of an image. We use this artificial benchmark

to assess the performance of applications with 1 × 1 filter
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kernels. As there is no data reuse across threads, such appli-

cations usually do not benefit from the use of local memory.

The Median filter is a nonlinear spatial filter with applica-

tions in medical imaging and image processing. It is particu-

larly effective in reducing salt-and-pepper noise, which are

sudden and sharp signal disturbances. By applying the filter

to a signal, each sample is replaced by the median of the

samples in the neighborhood. To calculate the result of the

filter, first all values of the filter mask need to be sorted by

their value. The median value is selected and used as result.

Our implementation is using local memory for prefetching

of data elements from global memory. Additionally, we are

using private memory to load all samples in the current filter

kernel. Then we follow approach of Blum et al. [1] to deter-

mine the median of medians. Therefore, our implementation

is already highly optimized. The filter kernel size is 3 × 3.

Hotspot is a thermal simulation tool and part of the Ro-

dinia benchmark suite [2]. The application consists of a 2D

transient thermal simulation kernel that iteratively solves

differential equations. Input to the hotspot application are

two square matrices: The first matrix represents power data

and the seconds represents temperature data. Output is a

matrix of the same size that contains the temperature.

The Sobel operator is used in image processing and com-

puter vision to build edge-detection applications. It computes

an approximation of the gradient that emphasizes on the

edges in an image. The calculation is done in a horizontal

and a vertical convolution step. We use the Sobel operator in

two applications. Sobel3 is using a 3 × 3 filter kernel mask

and Sobel5 is using a 5 × 5 filter kernel mask.

6.2 Input Data Sensitivity
The results of our work show that the amount of error that is

introduced by the approximation depends on the input to the

applications. In contrast, the speedup only depends on the
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Figure 6. Error distribution on different input data. On the

bottom is the speedup of our approach compared to the

state-of-the-art baseline implementation depicted.

selected approximation scheme. We apply our technique to

six benchmarks to show the sensitivity to input data. Gauss-

ian, Inversion, Median and Sobel3/Sobel5 are executed

on a set of 100 input data sets taken from the USC-SIPI Im-

age Database [22] and consisting of a subset of the misc and

pattern catalogue. For each of the applications we selected

one of the Pareto-optimal configurations. For Hotspot and

Inversion row scheme 1 was used. For the other applica-

tions stencil scheme was used. Figure 6 shows the results.

The upper part of the figure shows the distribution of the

error for the applications. The average error is almost always

less than 5%. Only Sobel5 shows a higher average. For all

image-based applications, there are some outliers that have

an error of up to 20%, except Sobel3 and Sobel5 which have

a higher error.

The Gaussian application is speedup by 2.2× by our ap-

proach. The median error is less than 4% and the variance

of the error is small, even considering that there are some

outliers in the error distribution of up to 17%.

The Inversion application has a speedup of 1.59×. The
median error is about 5%. The variance of the error is larger

and there are outliers of up to 20% error.

A speedup of 1.62× is shown for the Median application.

This is particularly interesting considering the application is

working also with private memory in the implementation of

median of medians as explained in Section 6.1. The reported

speedup is therefore on top of an already optimized applica-

tion. The median error is about 5%. The variance of the error

is about the same as for the Inversion application.

We observe a speedup of 1.98× for the Hotspot applica-

tion. As we rely on the input data provided by the application

we have 8 different input data sets, that differ in their size.

The input data is generated using a tool shipped with the

Hotspot application. The results show that in general exe-

cuting the application with a perforated data set introduces

only a very small error in the result. Furthermore, compared

with other applications the variance of the error is very small.

A speedup of 1.79× can be seen for the Sobel3 application.

While the median error is 5% the variance of the error is

larger than for the previous applications. For about 75% of

the measurements, the error is less than 15%.

(a) 0.12% (b) 5.05% (c) 19.32%

Figure 7. Input data and corresponding error [22].
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Figure 8. Perforation schemes with different parameters.

The highest speedup in our study is 3.05× for the Sobel5

application. The higher speedup in comparison to Sobel3

can be partly attributed to the larger filter kernel size and

therefore to more data reuse across threads. While the me-

dian error is 15% and therefore significantly higher than for

Sobel3, the distribution of the error is more dense and 75%

of the measurements have an error smaller than 20%.

These results show that the amount of error introduced by

our approach can differ by orders of magnitude depending

on the input. To illustrate this further we show exemplary

input and corresponding error for the Median application

in Figure 7. Input data that contains larger areas of the same

color can be approximated with a very small error of only

0.12% (Figure 7a). Countryside photographs (Figure 7b) pro-

duce an error of 5.05% that is about the median of our test

input data set. Pattern-images (Figure 7c) contain a lot of

high frequency and therefore are prone to perforation. They

yield a larger error, in this case 19.32%.

Applications that execute filter kernels with no or small

halo areas (Gaussian, Inversion, Median) and therefore

also a small area of prefetching, have a smaller variance in

the error. These applications also have center-weighted filter

kernels. Compared to that, Sobel3 has as larger variance but

still a comparable low median error of about 5%. Sobel5 has

a median error of 13% and an even higher variance.

6.3 Parametrization
Perforation Schemes In Figure 8, we compare different

perforation approaches. We conducted our study for the ap-

plications Gaussian, Inversion and Median. On the x-axis

is the runtime of the applications in 1/100 seconds depicted
while the y-axis shows the mean relative error.

We compare four configurations: Rows1:NN is perfora-

tion of every other row and reconstruction using nearest-

neighbor interpolation. Rows2:NN is perforation of 3 out

of 4 rows and reconstruction using nearest-neighbor inter-

polation. Rows1:LI is perforation of every other row and

reconstruction using linear interpolation. Stencil1 is per-
foration of the boundaries of a work group tile and uses

nearest-neighbor interpolation for reconstruction.

As expected, the error is higher if the approximation

scheme is more aggressive, e.g., if more input data is perfo-

rated. The error for Stencil1 is very low and always less

than 1%, as this perforation scheme is approximating only

a small amount of data. The error of Rows1:NN is about

half of the error of Rows2:NN. However, the runtime is for

all applications the same. This might be attributed to the

specific implementation or the memory architecture. The

error for Rows1:LI is smaller than for Rows1:NN (Gaussian:

-45%, Inversion: -21%, Median: -34%). However, the error

of Rows1:NN is already small and less than 4% for all three

applications. The error of Stencil1 is less than 1%. This is

due to the small amount of data that is approximated.

The runtime of Rows1:NN, Rows2:NN and Rows1:LI is sim-

ilar for the Gaussian and Inversion application. However,

it is different for the Median application, which is explained

by the use of private memory.

Local Work Group Size We compare performance with

local work group size in Figure 9. We use nearest-neighbor

interpolation for all applications. The baseline applications

use local memory for Gaussian and Median. Median is

also using private memory as described in Section 6.1. The

accurate Inversion application does not use local memory

as a prefetching step would increase runtime.

Two properties are remarkable: First, all configurations

have a larger or equal x than y component. This is due to

the better alignment of these configurations to the memory

interface. Second, the optimal work group configuration

for an application is different for the accurate Baseline
and for the approximated versions. Therefore, work group

configuration needs to match the approximation scheme.

6.4 Pareto Optimality
We compare our approach with Paraprox’ state-of-the-art

solution [15] in Figure 10. The state-of-the-art solution is

plotted using a • marker and our approach is plotted us-

ing a × marker. The Pareto-optimal solutions are connected

using a gray dashed line. Center, rows, and cols are three

output approximation schemes, see Figure 3. The numbers
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Figure 9. Local work group size tuning.
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Figure 10. Pareto-optimal solutions of the proposed and Paraprox’ state-of-the-art solutions.

next to the points indicate the perforation scheme: (1) ap-

proximate 2 rows/columns; (2) approximate 4 rows/columns.

Our approach is compared using two perforations schemes.

Stencil1 is approximating the work group boundaries, and

Rows1 is approximating every second row, see Figure 4 and

Figure 5. The speedup of all applications is calculated with

respect to the baseline implementation from Paraprox.

Figure 10a shows the Gaussian application. The Pareto-

optimal solutions are Stencil1 and Rows1. The error for

Stencil1 is with 0.45% very low and the speedup is 2.1×.
The error for Rows1 is 2.9%. The increased error is explained

by the larger amount of approximated input data. This also

explains the higher speedup of 2.2×. The second highest

speedup is 2.08× by the state-of-the-art approach Rows that

approximates 2 out of 3 rows. This is also the explanation of

the much higher error of 7.5%.

The Inversion application is shown in Figure 10b. Pareto-

optimal solutions are Rows and Rows1. Stencil1 cannot be
used as the application has a filter kernel size of 1×1. Cols be-
comes slower, which is explained by the improper alignment

of column-shaped perforation and memory data layout.

The results of the Median application are shown in Fig-

ure 10c. Pareto-optimal configurations are Stencil1, Rows1,
Rows and Cols. Speedup and error of Stencil1 and Rows1

are 1.29× and 0.5%; 1.36× and 3.3%. As the baseline imple-

ments themedian of medians and therefore uses private mem-
ory which is faster than local memory.

In general, the error of our approach is improved signif-

icantly compared with Paraprox while we reach a similar

speedup. Our approach is not limited to applications that

generally benefit from the use of local memory as shown by

the results of the Inversion application.

7 Conclusion
We introduce local memory-aware kernel perforation, a

novel technique for the acceleration of GPU kernels using

approximate computing. Our approach first skips loading

part of data from global memory and later uses local mem-

ory enabled reconstruction methods. We present a general

perforation scheme that skips loading rows of input data.

Additionally, we present a stencil perforation scheme that

skips loading the data elements close to the borders of the

work group tiles.

The experimental evaluation shows that our approach is

able to accelerate a variety of application from 1.6× to 3×

while maintaining an average error of 6%. Our results show

that the amount and distribution of the error depends on

the input data. We were able to significantly lower the error
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while keeping similar performance than the state-of-the-art

approach Paraprox.

In a parameter exploration study, we show that, depending

on the employed perforation approach and reconstruction

technique, the error can be tuned from 0.5% to 7% depending

on the input data. We show that the optimal local work

group size for the baseline kernel and approximate kernels

are different. Therefore, a system optimized for the baseline

kernel will not perform optimal for approximate kernels.

We investigate the Pareto-optimality of our approach. Our

experiments show that our approach can improve the error

and the speedup significantly with respect to state of the art.

In a following work we will implement our currently man-

ual approach in a fully automatic compiler-based framework.

As we have shown, that the technique gives promising re-

sults for a set of general-purpose kernels, a library can au-

tomatically apply and tune the technique to approximable

kernels and memory regions and accelerate a large set of

applications.
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