
OpenABL: A Domain-Specific Language for
Parallel and Distributed Agent-Based

Simulations

Biagio Cosenza, Nikita Popov, Ben Juurlink1,
Paul Richmond, Mozhgan Kabiri Chimeh2,

Carmine Spagnuolo, Gennaro Cordasco, and Vittorio Scarano3

1 TU Berlin, Berlin, Germany
2 University of Sheffield, Sheffield, UK

3 University of Salerno, Fisciano (Salerno), Italy

Abstract. Agent-based simulations are becoming widespread among
scientists from different areas, who use them to model increasingly com-
plex problems. To cope with the growing computational complexity, par-
allel and distributed implementations have been developed for a wide
range of platforms. However, it is difficult to have simulations that are
portable to different platforms while still achieving high performance.
We present OpenABL, a domain-specific language for portable, high-
performance, parallel agent modeling. It comprises an easy-to-program
language that relies on high-level abstractions for programmability and
explicitly exploits agent parallelism to deliver high performance. A source-
to-source compiler translates the input code to a high-level intermediate
representation exposing parallelism, locality and synchronization, and,
thanks to an architecture based on pluggable backends, generates target
code for multi-core CPUs, GPUs, large clusters and cloud systems.
OpenABL has been evaluated on six applications from various fields such
as ecology, animation, and social sciences. The generated code scales to
large clusters and performs similarly to hand-written target-specific code,
while requiring significantly fewer lines of codes.

1 Introduction

Agent-based simulations (ABS) are a powerful instrument to study a wide range
of scientific phenomena. According to Epstein [1], agent-based computational
models are well-suited to the analysis of phenomena where agent populations are
heterogeneous, there is no central control over individuals (autonomy), the space
where the agents work is explicit (e.g., an n-dimensional grid), and agents only
have local interactions with neighboring agents. Since SugarScape [2], computa-
tional models have been used to interpret society by translating social dynamics
into a type of computation. Examples are voting behaviors [3], epidemics [2],
and spatial unemployment patterns [4]. Applications go beyond social sciences,
from ecologists studying the predator-prey equilibrium [5] to hazard prevention
in evacuations [6].



With an increasing number of applications where agent modeling is used,
there is also a growing demand for computational power, due to larger agent
populations and increasingly complex models. For this purpose, parallel and
distributed implementations targeting different platforms, such as desktop GPUs
[7], HPC architectures [8], and distributed cloud systems [9] have been developed,
each focusing on a specific class of simulations and particular parallelization
issues. While the core concepts of all existing frameworks are fundamentally the
same, the variety of both hardware platforms and application contexts has led
to very different implementations. Ideally, ABS should be written in a portable
environment that can target a variety of parallel and distributed systems without
any program modifications.

The necessity of portable solutions to reproduce simulations on different par-
allel implementations and hardware platforms, has led to the OpenAB initiative4,
a community-driven collaborative project to provide models and procedures for
the benchmarking of multi-agent simulations on parallel and distributed com-
puting systems. This work aims at providing an effective and efficient tool to
these communities through the design and implementation of a domain-specific
language (DSL) for portable, parallel and high-performance ABS.

The contributions of this paper are:

1. The design of OpenABL, a novel domain-specific language for agent-based
computational modeling and simulation. The language targets the core re-
quirements of these simulations with tailored high-level semantics, and en-
ables parallel processing by explicitly exposing agent-parallelism.

2. A source-to-source compiler implementing the OpenABL language and sup-
porting five different parallel and distributed backends, which are capable
of running on diverse platforms such as multi-core CPUs, GPUs, and dis-
tributed clouds.

3. A collection of six test simulations from different application fields including
biology, ecology and social sciences, and an experimental evaluation and
comparison across different platforms.

2 Background

Many frameworks and libraries for implementing parallel ABS have been pro-
posed; however, each addresses quite different target architectures, with distinct
solutions for locality and synchronization. REPAST [10] is an agent-based simu-
lation toolkit written in C++, later extended and parallelized into the REPAST-
HPC framework [11], and tested on a Blue Gene/P HPC cluster. Cosenza et al.
[8] introduced a distributed load balancing schema for parallel ABS that scales
a simulation with one million agents on a cluster with 64 processors. Mason
[12] is a popular multi-agent simulation library written in Java. D-Mason [13,
14] provides an effective and efficient way of parallelizing Mason programs for
distributed systems, handling communication strategies and load balancing [15],

4 More information is available at http://www.openab.org.

2



tested on Amazon Web Services [15], and used on several social science scenar-
ios [16]. Flame [7] is an agent-based environment based on an underlying formal
model, called the X-Machine, and used in various scenarios such as cell simu-
lations [17] and immune system modeling [18]. FlameGPU [19] is an extension
of Flame that executes agent-based models on GPU architectures. Other GPU
implementations have focused on bio-inspired visual clustering [20] and on ef-
ficient compression of agent direction [21]. Several authors have performed a
comparison among ABS toolkits, both sequential [22] and parallel [23].

The idea of assuring portability across parallel implementations through
DSLs has been exploited in many application scenarios, in particular to target
large-scale computing systems [24]. Liszt [25] is the most similar to our work, with
a DSL for constructing mesh-based PDE solvers and capable of targeting clus-
ters, SMPs and GPUs. Liszt applications perform within 12% of hand-written
C++ code and scale to large clusters. Other DSL have been designed for stencil
computations [26], graph algorithms [27], and image processing pipelines [28].

3 Language Design

The goal of the OpenABL language is to provide a portable, efficient and easy-
to-use environment for agent-based modeling. This is achieved by a rich language
supporting domain-specific constructs, allowing the users to quickly prototype,
reproduce, and compare different models with different parameters. The lan-
guage also provides implicit support for agent parallelism and locality, so that
OpenABL codes can be efficiently mapped onto parallel and distributed imple-
mentations.

OpenABL
frontend

.abl

OpenABL
code

basic C

FLAME

MASON

D-MASON

FLAME GPU

.c

.xml.c

.xml.cu

.java

.java D-MASON 
dist.runtime Cluster

GPU

Multi-core

Sequential

FuncDecl

step ID: 
move_point

ParList

Type: 

Point

ID: 

in

ID: 

out

StmList

… ForStm

NEAR

Type: 

Point
ID: 

other
NEAR

ID:

in

ID: 

radius

StmList

…

…

BackendFrontend

Intermediate Representation (AST)

Fig. 1. OpenABL compilation workflow. The input code is translated to an AST-based
intermediate representation, from which different backends generate code for specific
platforms. The AST shows an excerpt of Listing 1.1.

Listing 1.1 shows a simple OpenABL code that demonstrates the general
structure of a simulation. The program is subdivided into multiple top-level sec-

3



tions: agent declarations, simulation parameters, environment parameters, step
functions and the main code. The language uses C-like syntax to maintain famil-
iarity with mostly C and Java based ABS frameworks, and supports standard
operators and control-flow statements, as well as vector types.

1 // Agent declarations

2 agent Point {

3 position float3 pos;

4 }

5 // Simulation parameters and environment def.

6 float radius = 5;

7 float env_size = 100;

8 param int num_agents = 1000;

9 param int num_timesteps = 100;

10 environment { max: float3(env_size) }

11 // Step function

12 step move_point(Point in -> out) {

13 // Move towards the average direction of the neighbors

14 float3 dir = float3 (0);

15 int num_neighbors = 0;

16 for (Point other : near(in , radius)) {

17 dir += normalize(other.pos - in.pos);

18 num_neighbors += 1;

19 }

20 out.pos = clamp(in.pos + dir/num_neighbors , float3(

env_size));

21 }

22 // Main code: Initialization and execution

23 void main() {

24 for (int i : 0.. num_agents)

25 add(Point {pos: random(float3(env_size))});

26 simulate(num_timesteps) { move_point }

27 save("result.json");

28 }

Listing 1.1. An OpenABL code example implementing a simple agent motion.

Step Functions and Agent Parallelism It is important to incorporate agent
parallelism into the language in a way that can be supported with the same
semantics by all backends. In OpenABL, this is accomplished using step func-
tions, which take an input agent of some type and yield a modified output agent.
For example, in

step move_point(Point in -> out) { ... }

the input agent in of type Point is the result of the last timestep, while the
output agent out will be the result of the current timestep. The output will only
become available once a step function has been called for all agents of that type.
Conceptually, this corresponds to a double buffering mechanism: an input buffer

4



of read-only agents and an output buffer of write-only agents, which are swapped
at the end of a discrete simulation step. The strict in/out separation is required
in order to produce deterministic, order-independent simulations. Surprisingly,
we found that many sequential agent libraries such as Mason do not provide a
native double-buffering mechanism. Therefore their results are not deterministic,
as they depend on the updating order of the agents. OpenABL overcomes this
limitation and always produces order-independent models.

The simulate statement invokes a simulation for a certain number of timesteps,
during which a list of step functions will be executed in the given order. First
one step function is executed for all agents (of the applicable type), before the
next step function is run. Between step functions, the out parameter becomes
the new in parameter. For instance, in the Ants model

simulate(num_timesteps) { ant_act1 , pheromone_deposit ,

ant_act2 }

three step functions are called: the first on ant agents; the second on pheromone
agents; the last again on ant agents.

The whole simulation starts at the main function, which is used to set up
agents (typically from a file or randomly generated), to invoke the simulation
and save the simulation results. Simulation parameters are declared as global
constants. If a constant is prefixed with the param keyword it may also be over-
ridden from the command line.

Locality A fundamental concept of agent-based modeling is locality, because in-
teractions are usually limited to nearby agents. In general, this may be governed
by arbitrary topologies, but OpenABL is currently limited to the common case
of two- and three-dimensional Euclidean topologies. Each agent declares a desig-
nated position member of type float2 or float3, which provides the position
of the agent for spatial queries. The agent neighborhood can then be accessed
through the combination of a for loop and a radius-based near() query:

for (AgentT neighbor : near(in , radius)) { ... }

The type of the input agent and the type of the neighboring agents that are
fetched does not necessarily have to match. The query is performed using a
backend-specific spatial acceleration data structure such as grid [19] and kd-
tree [29].

Agent t : near(x,radius)

radius
x

AgentT t : near(x,radius)

x
radius

Fig. 2. near() queries with homogeneous and heterogeneous agent types.

5



Simulations with heterogeneous agents, i.e. with multiple agent types, are
implemented with multiple step functions on different agent types, and by spec-
ifying different return types on near() queries, as shown in Figure 2.

Environment properties are specified using an environment declaration which
includes the environment dimensionality and bounds (min and max). Agent po-
sitions must stay within these bounds. For performance reasons, this is not au-
tomatically enforced by the language, but functions to perform the necessary
clamping or wrap-around are provided. The radius used for spatial acceleration
structures is usually determined automatically, but may also be explicitly given
here. The standard library also provides commonly used functions for geometric
and trigonometric operations.

Dynamic Agent Creation and Removal Typically, the agents are created
at the beginning of the simulation and are not removed until the end; however,
some simulations require a dynamic mechanism for the creation and removal of
agents. For example, in the Predator-Prey model, predators pursue and eat prey,
who reproduce at a given rate. As a result, the agent populations periodically
increase and decrease during the course of a simulation. The language enforces
a number of additional constraints for backend compatibility: in a step function,
each agent may add at most one new agent. This means that in a single step,
the number of agents can at most double. The new agent position must be the
same as the generating agent position (e.g., in.pos). An agent can remove itself
by using the removeCurrent() function, but cannot remove a different agent.

4 Implementation

Compilation Process OpenABL is a source-to-source compiler employing a
classical three-stage pipeline: First, Flex and Bison are used to parse the source
code into an abstract syntax tree (AST), which acts as our primary intermediate
representation. Then, target-independent analysis is performed, which validates
the code and enforces semantic constraints, while also annotating the AST with
necessary type and dependency information. Finally, different backends emit
source code (and other auxiliary files) for the target platform based on the
annotated AST.

Backends OpenABL currently supports five backend implementations target-
ing different agent models, acceleration data structures and platforms.

A basic C backend serves as a reference implementation and basis for other
C-based backends. It does not use acceleration structures, implements double-
buffering using two arrays of agents swapped after each step, and uses OpenMP
for trivial parallelization.

Flame [7] models agents using X-Machines, which are state machines that
support sending messages between agents. A step function can modify the mem-
ory of the current agent, send messages and iterate over messages sent in the

6



previous step. To support neighborhood queries, we determine which members of
neighboring agents are used inside a for-near loop and generate one step function
that sends a message containing all the used members. A second step function
processes the messages falling into the specified neighborhood. A side-effect of
this process is that no explicit double buffering of the agent memory is neces-
sary: because messages are generated in a previous step, changes to agents in
the current timestep are not observable. The backend generates the three parts
of a Flame model: an XML model specification, an XML initial agent state file,
and the C step function definitions. Flame does not support adding or removing
agents at runtime and does not use spatial acceleration structures.

FlameGPU [19] is based on Flame, but targets execution on the GPU using
CUDA. Our FlameGPU backend is structurally similar to the Flame backend.
It supports grid-based spatial acceleration, which requires a specification of the
environment dimensions and partitioning radius in the XML model. The environ-
ment bounds must be adjusted upwards to be multiples of the radius. Runtime
agent removal/addition is supported, but only the current agent may be removed
and one added per step function. Both restrictions are enforced by the language.

Mason [12] is an ABS and visualization library written in Java. The two
main components are an environment, which supports grid-based neighborhood
queries, and a schedule, which executes the step functions. Mason does not
have native support for double-buffering: simulations are fundamentally order-
dependent, based on the assumption that for most models it does not make a
significant difference if the state from the current (rather than previous) timestep
is used for some agents. To support our execution semantics, agents hold two
state objects, which are used alternately and swapped at the end of a step func-
tion. In Mason, each agent has only a single step function; however, our execution
model may require multiple step functions, executed for all agents and in a spe-
cific order.5 We solve this with a cyclic counter for each agent indicating which
step function to execute. Mason supports both removal and addition of agents at
runtime. This backend also produces code for the visualization of the simulation.

D-Mason [13, 14] is a distributed extension of Mason that allows the distribu-
tion of the simulation across multiple, even heterogeneous machines. It is based
on a Master/Workers paradigm where the master partitions the simulation en-
vironment into regions. All the agents in a region are assigned to a machine,
which performs the simulation, handles the migration of agents, and manages
the synchronization between neighboring regions. The D-Mason communication
mechanism is based on the Publish/Subscribe pattern. Unlike Mason, D-Mason
requires environments to use only positive coordinates. D-Mason supports agent
removal/addition at runtime; however, new agents must be positioned in the
current space partition.

Compiler flags are provided for further backend-specific configuration. For
example, the float data-type used by OpenABL is mapped to double-precision

5 While Mason itself supports multiple step functions in the form of anonymous Step-
pables, this is not supported by D-Mason, so a different solution is required.

7



floats by default, because this is the only type supported by all backends, but
Flame and FlameGPU can switch to single-precision through a compiler flag.

5 Experimental Evaluation

OpenABL has been evaluated on six applications in terms of programmability
of the language and the performance of the code generated for the five backends,
including single-node performance on CPUs and GPUs, scalability on a cluster,
and a comparison against hand-written target-specific code.

Reference Simulation Models The evaluation uses six agent-based models
from different domains, for which reference implementations were available for
at least one of our targets. Table 1 lists general properties of these models.

Circle is a standardized benchmark part of the OpenAB initiative, for as-
sessing the performance of fixed-radius near neighbor lookups, formally defined
by Chisholm et al. [30]. Boids [31] is a steering behavior for autonomous char-
acters in animation and games, which simulates the flocking behavior of birds.
The agent motion is derived from three components: separation, alignment, and
cohesion. Conway’s Game-of-life is a cellular automaton model, implemented
with one agent per cell and an alive boolean status variable. Sugarscape is a
social science model where agents move on a grid of a regrowing resource (sugar),
which they must consume to survive. We implement it using a stationary grid
of agents. The Ants Foraging model simulates ants that, when they discover
a food source, establish a trail of pheromones between the nest and the food
source. The model uses two pheromones, which set up gradients and evaporate
after some simulation steps, to the nest and to the food source respectively.
We parallelized the original Mason model [32]: sequential access to global data
structures, which is not suitable for parallelization, has been replaced by two
step functions that handle the deposition and evaporation of (grid) pheromones,
and one for the ant movement. Predator-Prey is our largest model, which in-
volves three different agent types (prey, predator and grass), 13 step functions,
and utilizes dynamic agent creation and removal. Both predators and prey im-
plement short-range collision avoidance, a mid-range flocking, and can reproduce
at different rates. Each predator follows the closest prey, which is eaten if it is
too close. Conversely, prey avoids predators and eats grass, which regrows after
a fixed time interval. All simulations have been executed with a different number
of agents. The environment is scaled with the square root (for two-dimensional
simulations) of the agent number, so that the agent density remains constant.

Programmability Evaluation To evaluate the programmability and ease of
use of OpenABL, we compare the eLOC (effective lines of code, ignoring com-
ments and blank lines) of OpenABL models with available reference models

8



Model Properties Implementation Size in eLOC

Application Area Types Steps AR OpenABL FlameGPU D-Mason

Circle micro-benchmark 1 1 36 184 (×5.1) 537 (×14.9)
Boids animation 1 1 82 240 (×2.9) 767 (×9.4)
Game of Life cellular automaton 1 1 48 133 (×2.8) 477 (×9.9)
Sugarscape social science 1 4 154 345 (×2.2) n/a
Ants Foraging animal ecology 2 3 191 n/a 967 (×5.1)
Predator-Prey animal ecology 3 13 3 248 858 (×3.5) n/a

Table 1. Simulation benchmarks with the number of agent types, number of step
functions, whether dynamic agent addition/removal is used (AR), effective lines of
code (eLOC) of the implementations in OpenABL, FlameGPU and D-Mason.

from FlameGPU and D-Mason.6 As seen in Table 1, the FlameGPU implemen-
tations are 2-5 times larger, while the D-Mason models are 5-15 times larger.
While eLOC is not a very reliable indicator of programmability, it is clear that
OpenABL models tend to be significantly more compact than manual imple-
mentations.

Single-node Performance Comparison For single-node performance evalu-
ation, we compared the performance of the code generated by the OpenABL
compiler for the basic C, Mason, Flame and FlameGPU backends. The six test
models were run for 100 timesteps with population sizes ranging from 250 to 106

agents. The Predator-Prey model was only evaluated on backends supporting
dynamic addition/removal of agents. The benchmarks were performed on a sys-
tem with an Intel Core i5-4690K CPU (4 cores at 3.50GHz), 16GB of memory,
running on Ubuntu 16.04. For FlameGPU, we used an NVIDIA Titan Xp (Pas-
cal architecture) with 12GB of memory. The basic C backend was configured to
use multiple threads using OpenMP.

The results in Figure 3 show that Flame and basic C scale quadratically
with the number of agents. This is expected, as they do not use any spatial
acceleration structure. Mason is much faster than Flame, and is the best im-
plementation for small-sized simulations. FlameGPU pays a high overhead for
small-sized simulations, because of the data transfer from the host to the GPU;
however, it is the best-performing solution for larger simulations with more than
104 agents. For most models, both Mason and FlameGPU scale approximately
linearly at large population counts. One notable exception is Ants, where Mason
degenerates to quadratic behavior, because of a very dense agent clustering at
the start of the simulation.

6 The used reference models are available at https://github.com/FLAMEGPU/

FLAMEGPU, https://github.com/FLAMEGPU/Tutorial and https://github.com/

isislab-unisa/dmason.

9



103 104 105 106

10−1

100

101

102

Circle

R
u

n
ti

m
e

(s
)

Mason

FlameGPU

Flame

Basic C

103 104 105 106

10−1

100

101

102

Boids2D

Mason

FlameGPU

Flame

Basic C

103 104 105 106
10−2

10−1

100

101

102

Game Of Life

Mason

FlameGPU

Flame

Basic C

103 104 105 106
10−2

10−1

100

101

102

Sugarscape

R
u

n
ti

m
e

(s
)

Mason

FlameGPU

Flame

Basic C

103 104 105 106

10−2

10−1

100

101

102

103

Ants

Mason

FlameGPU

Flame

Basic C

103 104 105 106

100

101

102

103

Predator-Prey

Mason

FlameGPU

Fig. 3. Performance of generated Mason, FlameGPU, Flame and basic C code with a
different number of agents (x-axis).

2 4 8 16 32 64 128

200,000

113,000
89,800

62,500
46,100

26,400

13,700

Circle

R
u

n
ti

m
e

(s
)

OpenABL

ideal

2 4 8 16 32 64 128

14,300

8,900

4,300

2,710

1,700

552

400

Boids

OpenABL

ideal

2 4 8 16 32 64 128

562

270

147

83

46

26

18

Game-of-Life

OpenABL

ideal

2 4 8 16 32 64 128

740,000

318,000

219,000

150,000
118,000

49,100
38,900

Sugarscape

R
u

n
ti

m
e

(s
)

OpenABL

ideal

2 4 8 16 32 64 128

8,450

5,540

4,000
3,0902,780
2,1802,320

Ants

OpenABL

ideal

2 4 8 16 32 64 128

1,310

700

402
294
254236222

Predator-Prey

OpenABL

ideal

Fig. 4. OpenABL D-Mason strong scaling with different number of cores (x-axis).

Cluster Scaling To evaluate the performance scaling of the OpenABL D-
Mason backend, we use a cluster of 12 nodes equipped with two Intel Xeon
E5-2430 (six cores) with hyper-threading disabled, connected by I350 Gigabit
network adapters. One node is used for coordinating the simulation, while the
others allocate one D-Mason logical processor for each core, running on Oracle
JVM 1.8 and exploiting Apache ActiveMQ as message broker for communica-
tion/synchronization (the broker is allocated on the coordinating node). Figure
4 shows the strong scalability of the six applications, with each model simulat-

10



ing 106 agents for 1000 timesteps. The plots show the runtime in seconds for an
increasing number of logical processors (cores).

The Boids model exhibits good scalability. Despite having similar behavior,
Circle’s scaling is slightly worse due to different parametrization, e.g., a wider
interaction radius. In Game-of-Life and Sugarscape, agents are distributed evenly
in the space (on a grid) and are stationary, resulting in high scalability. Ants and
Predator-Prey are the most complex simulations. The Ants model suffers from
a dense concentration of the ant agents, especially at the start of the simulation,
resulting in an uneven distribution of the workload. Predator-Prey is highly
dynamic because of the addition/removal of agents, which drastically affects
prey-crowded areas after the arrival of predators. This represents a challenge
for distributed memory system, leading to bad scalability. We believe that more
advanced load balancing strategies may substantially improve this aspect [33].

Performance Comparison Against Manually-tuned Code The potential
overhead of the generated code has been evaluated against manual implemen-
tations of the Boids benchmark, because it is available for most libraries and
is simple to validate. Results are summarized in Table 2. The generated code
for Mason is 9% slower than the manual implementation; the reason is the dou-
ble buffering mechanism introduced by OpenABL to ensure order-independent
correctness, not supported in standard Mason. For FlameGPU, both generated
code and manual implementation have similar performance: the semantics of
the language map very well without any noticeable overhead. The overhead for
D-Mason is 30%, motivated essentially by an improvement of the synchroniza-
tion mechanism for each step function (agent buffer analysis may potentially
reduce such overhead by avoiding unnecessary synchronizations). We omitted
Flame from the comparison because of its very poor scalability (impractical
with > 5000 agents).

Backend Overhead Main Reason

Mason 9% Double-buffering
D-Mason 30% Double-buffering and additional synchronization
Flame n/a (Too slow to compare)
FlameGPU 0% Perfect programming model match

Table 2. Overhead of OpenABL generated code for Boids model compared to man-
ually tuned code.

11



6 Conclusion

We present OpenABL, a domain-specific language designed for agent modeling
on high-performance parallel and distributed architectures. It comprises an easy-
to-program language that relies on high-level abstractions for programmability
and explicitly exploits agent parallelism to deliver high-performance. It supports
a wide range of context-specific semantics such as order-independent step func-
tions, neighborhood queries, heterogeneous agents, and dynamic agent addition
and removal. A source-to-source compiler translates the input OpenABL code
into an AST-based intermediate representation exposing parallelism, locality and
synchronization at the agent level. Subsequently, a collection of pluggable back-
ends generate target codes for multi-core CPUs, massively parallel GPUs, large
clusters and cloud systems. The OpenABL generated codes have been tested on
a collection of six applications from various fields. While a program written in
OpenABL is much smaller than one written for non-portable platform-specific
libraries, its performance is very close to manual implementations.

OpenABL is an open source project available at https://github.com/

OpenABL/OpenABL, with the goal of becoming an open research platform. The
used code and instructions to reproduce our benchmarking results are available
in a figshare repository [34].

This research has been partially funded by the DFG project CELERITY
(CO 1544/1-1) and by the EPSRC fellowship Accelerating Scientific Discovery
with Accelerated Computing (EP/N018869/1).

References

1. Epstein, J.M.: Agent-based computational models and generative social science.
Complexity 4(5) (1999) 41–60

2. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the
Bottom Up. The Brookings Institution (1996)

3. Kollman, K., Miller, J.H., Page, S.E.: Adaptive parties in spatial elections. Amer-
ican Political Science Review 86(4) (1992) 929–937

4. Topa, G.: Social interactions, local spillovers and unemployment. The Review of
Economic Studies 68(2) (2001) 261–295

5. Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Int.
Joint Conf. on Artificial Intelligence. (1995) 113–126

6. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: EG Symp. on Computer Animation. (2007) 99–108

7. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
Flame: Simulating large populations of agents on parallel hardware architectures.
In: Conf. on Autonomous Agents and Multiagent Systems. (2010) 1633–1636

8. Cosenza, B., Cordasco, G., Chiara, R.D., Scarano, V.: Distributed load balancing
for parallel agent-based simulations. In: Int. Euromicro Conf. on Parallel, Dis-
tributed and Network-based Processing, PDP. (2011) 62–69

9. Carillo, M., Cordasco, G., Serrapica, F., Spagnuolo, C., Szufel, P., Vicidomini, L.:
D-Mason on the Cloud: An Experience with Amazon Web Services. In: Euro-Par
Parallel Processing Workshops, PADABS. (2016) 322–333

12



10. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations
of the repast agent modeling toolkit. Trans. Model. Comp. Sim. 16(1) (2006) 1–25

11. Collier, N., North, M.: Parallel agent-based simulation with repast for high per-
formance computing. SIMULATION 89(10) (2013) 1215–1235

12. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent
simulation environment. SIMULATION 81(7) (July 2005) 517–527

13. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,
C.: A framework for distributing agent-based simulations. In: Euro-Par Parallel
Processing Workshops, HeteroPar. (2011) 460–470

14. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,
C.: Bringing together efficiency and effectiveness in distributed simulations: The
experience with D-Mason. SIMULATION 89(10) (2013) 1236–1253

15. Cordasco, G., Chiara, R.D., Raia, F., Scarano, V., Spagnuolo, C., Vicidomini, L.:
Designing computational steering facilities for distributed agent based simulations.
In: SIGSIM Principles of Advanced Discrete Simulation. (2013) 385–390

16. Lettieri, N., Spagnuolo, C., Vicidomini, L.: Distributed agent-based simulation
and GIS: an experiment with the dynamics of social norms. In: Euro-Par Parallel
Processing Workshops, PADABS. (2015) 379–391

17. Oliveira, A.P., Richmond, P.: Feasibility study of multi-agent simulation at the
cellular level with FLAME GPU. In: FLAIRS Conf. (2016) 398–403

18. Tamrakar, S., Richmond, P., D’Souza, R.M.: PI-FLAME: A parallel immune sys-
tem simulator using the FLAME graphic processing unit environment. SIMULA-
TION 93(1) (2017) 69–84

19. Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular
level agent-based simulation with Flame for the GPU. Briefings in Bioinformatics
11(3) (2010) 334

20. Erra, U., Frola, B., Scarano, V.: A GPU-based interactive bio-inspired visual
clustering. In: Symp. on Comp. Intelligence and Data Mining. (2011) 268–275

21. Cosenza, B.: Behavioral spherical harmonics for long-range agents’ interaction. In:
Euro-Par Parallel Processing Workshops, PADABS. (2015) 392–404

22. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In:
37th Conf. on Winter Simulation. (2005) 2–15

23. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A Survey on Parallel and
Distributed Multi-Agent Systems. In: Euro-Par Workshops, PADABS. (2014)

24. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: A uniform approach for
programming distributed heterogeneous computing systems. J. Parallel Distrib.
Comput. 74(12) (2014) 3228–3239

25. DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, M., Barrientos, M., Elsen,
E., Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J., Hanrahan, P.: Liszt:
a domain specific language for building portable mesh-based PDE solvers. In: Conf.
on High Perfor. Computing Networking, Storage and Analysis. (2011) 9:1–9:12

26. Christen, M., Schenk, O., Cui, Y.: Patus for convenient high-performance stencils:
Evaluation in earthquake simulations. In: Conf. on High Performance Computing,
Networking, Storage and Analysis, SC. (2012) 11:1–11:10

27. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-marl: A DSL for easy and
efficient graph analysis. In: ASPLOS. (2012) 349–362

28. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S.P., Durand, F.:
Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31(4) (2012) 32:1–32:12

13



29. Kofler, K., Steinhauser, D., Cosenza, B., Grasso, I., Schindler, S., Fahringer, T.:
Kd-tree based n-body simulations with volume-mass heuristic on the GPU. In:
2014 IEEE International Parallel & Distributed Processing Symposium Workshops,
Phoenix, AZ, USA, May 19-23, 2014. (2014) 1256–1265

30. Chisholm, R., Richmond, P., Maddock, S.C.: A standardised benchmark for as-
sessing the performance of fixed radius near neighbours. In: Euro-Par Parallel
Processing Workshops, PADABS. (2016) 311–321

31. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH 21(4) (1987) 25–34

32. Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging.
In: Conf. on Autonomous Agents and Multiagent Systems. (2004) 36–43

33. Cordasco, G., Cosenza, B., De Chiara, R., Erra, U., Scarano, V.: Experiences
with Mesh-like computations using Prediction Binary Trees. Scalable Computing:
Practice and Experience, Scientific international journal for parallel and distributed
computing (SCPE) 10(2) (June 2009) 173–187

34. Cosenza, B., Popov, N., Juurlink, B., Richmond, P., Kabiri Chimeh, M., Spagnuolo,
C., Cordasco, G., Scarano, V.: OpenABL: A domain-specific language for parallel
and distributed agent-based simulations. figshare. Fileset. https://doi.org/10.
6084/m9.figshare.6384413 (2018)

14


