SYprox: Combining Host and Device Perforation
with Mixed Precision Approximation
on Heterogeneous Architectures

Lorenzo Carpentieri
University of Salerno, Italy
Department of Computer Science
Italy

Abstract

Approximate computing is an emerging paradigm that
aims to exploit the inherent error tolerance of many applica-
tions, particularly in domains such as image processing and
machine learning. Taking advantage of this property, appli-
cations can trade off accuracy for significant gains in per-
formance and power consumption. Existing approximation
techniques for GPUs are limited to very specific approaches,
do not fully exploit the host-device execution model, and
are often restricted in terms of programming models and
supported target hardware. This paper introduces SYprox,
a new approximate computing framework based on SYCL
that allows programmers to easily implement heterogeneous
approximated applications. SYprox supports multiple tech-
niques, including data perforation, signal reconstruction, and
mixed precision, and allows them to be combined to support
a wide range of approximations. In particular, SYprox ex-
tends existing perforation approaches to allow both host
and device data perforation. Experimental results show that
SYprox’s approximations are Pareto dominant with respect
to state-of-the-art approaches and are portable to AMD, Intel
and NVIDIA GPUs.

CCS Concepts

« Software and its engineering — Software develop-
ment techniques; Parallel programming languages; Soft-
ware performance;

Keywords

Approximate Computing, Programming Models, SYCL, Data
Perforation, Reconstruction, Mixed Precision.

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in 2025 International Conference on Supercomputing (ICS °25), June 8-11, 2025,
Salt Lake City, UT, USA, https://doi.org/10.1145/3721145.3725741.

Biagio Cosenza
University of Salerno, Italy
Department of Computer Science
Italy

ACM Reference Format:

Lorenzo Carpentieri and Biagio Cosenza. 2025. SYprox: Combining
Host and Device Perforation with Mixed Precision Approximation
on Heterogeneous Architectures. In 2025 International Conference
on Supercomputing (ICS °25), June 8-11, 2025, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3721145.3725741

1 Introduction

In many real-world applications, it is recognized that ab-
solute precision is not always necessary, especially when
weighed against the potential benefits of consistently im-
proved performance, increased energy efficiency, and better
resource utilization. This has led to the development of ap-
proximate computing techniques based on the observation
that many computational tasks can produce acceptable re-
sults even when subjected to controlled inaccuracies.

However, the use of approximate computation techniques
presents several challenges [2, 24]. By trying to minimize
error and maximize other metrics, typically performance,
we are actually formulating a multi-objective problem. Since
approximation accuracy and performance are not correlated,
this leads to a multi-objective problem without a single op-
timal solution, but rather a set of Pareto optimal dominant
solutions [7]. Dealing with multi-objective problems and
Pareto sets makes the optimization process more complicated
for users, who need to understand the different trade-offs at
stake.

The second challenge is presented by the wide range
of techniques that span multiple levels of the computing
stack, from hardware design to software implementations.
From a software perspective, some of the most promising
approaches are the use of lower-precision arithmetic units in
mixed precision methods [4], the perforation of data, either
input or output, and the use of signal reconstruction tech-
niques to mitigate error [19, 20]. Those promising techniques
are typically used standalone.

However, the potential combined application of such tech-
niques can unleash unprecedented improvement, as it results

https://doi.org/10.1145/3721145.3725741
https://doi.org/10.1145/3721145.3725741
https://doi.org/10.1145/3721145.3725741

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

in more overall approximations in the multi-objective accu-
racy/performance space, ultimately leading to better Pareto
optimal solutions. In fact, this is not easy because existing
techniques are difficult to apply and often rely on very spe-
cific approaches [17, 36], compilers [14, 32, 35], or program-
ming languages [9, 25, 38]. While compiler approaches are
desirable, they are also complex and often limited to very
specific architectures.

This paper proposes a novel approximation framework
based on the SYCL programming model, which aims to easily
implement approximated applications on a wide range of
GPUs from different vendors, as well as providing a way
to combine state-of-the-art approximation techniques in a
composable way, so that they can be easily combined to
deliver unprecedented gains in accuracy and performance.

This paper makes the following contributions:

e SYprox, a new approximate computing interface based
on SYCL that allows programmers to easily implement
heterogeneous approximated applications with state-
of-the-art approximation techniques such as perfora-
tion, mixed precision, and signal reconstruction;

e a new perforation approach called host perforation,
which applies perforation on the host data and only
sends/receives perforated data to/from the device;

o for the first time, the ability to combine data perfora-
tion and reconstruction techniques (on the host, device,
or both) with mixed precision to support an unprece-
dented number of approximations;

e experimental results of SYprox approximation tech-
niques (individually and in combination) and a compar-
ison with state-of-the-art frameworks (HPAC [9, 25]
and Maier et al. [20]) for eight benchmarks on 100 in-
put datasets evaluated on GPUs from different vendors,
including AMD, Intel, and NVIDIA.

The rest of the paper is organized as follows. Section 2 dis-
cusses approximate computing techniques and related works.
Section 3 provides an overview of the SYprox framework.
Section 4 introduces the SYprox interface. Section 5 presents
the host perforation technique, while Section 6 describes
our combined approximation strategy. Section 7 shows the
experimental setup and evaluation, and Section 8 concludes
the paper.

2 Background and Related Work

Over recent years, several software techniques have emerged
to enable approximate computation, helping applications en-
hance performance while retaining acceptable accuracy lev-
els. This section provides an overview of the key approaches
and how they are implemented in existing programming
models [24].

Preprint — do not distribute.

Lorenzo Carpentieri and Biagio Cosenza

2.1 Approximation Techniques

Mixed Precision [16, 28] involves the use of different levels
of precision within the same program. Rather than uniformly
adopting high precision data types (e.g., double precision),
mixed precision methods selectively apply lower precision
(e.g. half precision) in suitable situations, consequently low-
ering computational workload, memory usage, and energy
demands. By carefully balancing precision levels, mixed pre-
cision can significantly enhance performance with minimal
accuracy loss.

Loop Perforation [27, 36] is a technique that reduces the
number of iterations in a loop. Instead of executing every
iteration, the loop is "perforated” by skipping some itera-
tions based on a predefined pattern, thereby reducing overall
execution time and energy consumption.

Data Perforation [8, 19] is similar to loop perforation, but
operates at the level of data rather than the control flow.
In this technique, a subset of data points is skipped during
computation, effectively reducing the total execution times.

Reconstruction techniques try to fill the accuracy gaps
left by skipped computations or data points to maintain the
quality of the output. Missing values are approximated on
the basis of available data. There exist two types of recon-
struction: output reconstruction approximates the data that
were perforated after the computation using interpolation
between the output elements; input reconstruction involves
a set of local reconstruction techniques that work with local
memory and efficiently combine the sparse data fetched by
global perforation schemes while consistently improving
the accuracy of the approximation [21, 22]. Reconstruction
allows perforation techniques to achieve significant com-
putational savings while maintaining an acceptable level of
accuracy in the final output.

With respect to the state-of-the-art techniques, we imple-
mented a new data perforation approach called host perfo-
ration, which applies perforation on the host data and only
sends/receives perforated data to/from the device

2.2 Programming Models Approaches

With the increasing demand for higher performance in
computing systems, approximate computing methods have
become essential to improve computational efficiency. To fa-
cilitate the adoption of these techniques, various frameworks
have been implemented.

Manual Approach. Approximate computing techniques
can be applied directly by the programmer without any as-
sistance from compilers or specialized programming models.
Maier et al. [21, 22] define a local memory-aware approxima-
tion approach based on loop perforation that approximates
the input data of GPU applications by reducing the amount
of data loaded from global memory and reconstructing a

SYprox

SYprox API

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

range<2> r = range<2>{N,N};
PBUFFER<half, 2, prow<half,2>> inBuf(a,r);

pbuffer<float,2,prow<float,1,nn_out>> outBuf(b,r);

prange<> gl{N,N}, ws{32, 32};
q.submit([&](handler &h){

[]]
as
paccessor<float,2,prow<float>> in_acc{in,h,read}; » as

paccessor<float,2> out_acc{out,h};
h.parallel_for(gl,[&](id<2> id){
out_acc[id] = perf_acc[id] * 2;
1
}

Host .
Host | perforation | Device
. [BE8EE i ;
evice
O |BEEBS /| Precision ° |
+ (DENEN f— /] Perforation
.. :: . sssss
ll] - > EEgEn
as ™ Reconstruction
[]
H e0YY
sspes " ’
N L1111
[[[1] o
[[[[][]

Figure 1: Overview of SYprox approximation

high-accuracy approximation with local reconstruction tech-
niques. With respect to manual approaches, our work proposes
a library-based framework that automatically applies approx-
imations, eliminating the need for manual implementation by
programmers.

Compilers. Although manual approaches method can yield
significant performance gains, it places a heavy burden on de-
velopers and is error-prone due to the lack of automated tools.
Several works have focused on integrating approximate com-
puting techniques directly into compilers. These compilers
can automatically identify opportunities for approximation
and apply transformations that improve performance, such
as reducing computational precision [5, 6, 15, 16, 28, 33],
loop perforation [1, 10, 18, 19, 23, 29, 31], or relaxing mem-
ory consistency [3, 17, 26]. Paraprox [29] is a software solu-
tion applicable to commodity hardware that automatically
discovers and approximates common patterns such as map,
scatter/Gather, reduction, and others. For each pattern, Para-
prox provides an approximation strategy with one or more
knobs that can be used to navigate the performance-accuracy
trade-off. Lou et al. [19] presented a new prototype language
and compiler that applies loop perforation and output recon-
struction only to the image processing pipeline. Laguna et al.
[15] propose GPUMixer a tool to tune the data precision of
applications on GPUs. Although common mixed-precision
approaches change the precision of variable declarations,
a fine-grained approach is to express the precision of each
floating-point operation in the program. GPUMixer provides
a practical method to select the computations to be per-
formed on FP32 or FP64 precision so that user-defined accu-
racy constraints are maintained and performance is signifi-
cantly improved. By automating the application of approxi-
mations, compiler-based approaches reduce the complexity
of adopting approximate computing techniques. However,
with fully automatic approaches, programmers are required

Preprint — do not distribute.

to trust the system, with no way to intervene when opportu-
nities are overlooked or invariants are compromised. In con-
trast, our work abstracts compiler-level approximations to the
library level, without requiring novel programming model pro-
totypes and specialized compilers. Furthermore, our approach
applies to general-purpose applications, enabling approxima-
tion beyond a specific domain.

Language Extensions. Programming models have also been
extended to support approximate computing by providing
abstractions and frameworks that allow developers to specify
approximate behaviors more easily [9, 37, 38] . These models
often provide APIs, annotations, or directives that enable
programmers to define where and how the approximation
should occur. This simplifies the development process by
integrating approximate computing into higher-level pro-
gramming constructs, offering a more structured and less
error-prone approach than manual or compiler methods.
Parasyris et al. [25] propose HPAC, a framework that ex-
tends the OpenMP programming model in order to provide
approximate computing techniques. This approach incorpo-
rates pragma-based annotations composable with standard
OpenMP annotation, code transformations, and, analysis to
enable developers to identify approximation opportunities
in their applications. HPAC facilitates the integration of loop
perforation and memoization, offering a mechanism to in-
vestigate the accuracy-performance trade-offs for a given
application. This system suggests potential approximations
that can enhance performance while maintaining the accu-
racy levels defined by the user. The framework has been
extended to enable approximate computing techniques also
on GPUs [9] by extending the OpenMP annotation for GPU
offloading. With respect to the state of the art, we propose the
first header-only library in SYCL that implements data perfo-
ration, reconstruction, and mixed precision allowing program-
mers to define configurable and heterogeneous approximated
application.

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

Table 1 compares the capability of several related works
and SYprox. By comparison, our proposed solution intro-
duces an innovative library-based method for approximate
computing in heterogeneous architectures, implementing
host/device perforation, reconstruction, and mixed precision.
To the best of our knowledge, SYprox is the first library-based

framework that allows programmers to write heterogeneous 1

applications that combine host/device perforation with in- 2

put/output reconstruction and mixed precision. z

5

Table 1: Comparison against state of the art 6

. . Mixed 4

Approach Perforation Reconstruction Precision

Maier et al. [20] manual device input X
Paraprox [30] compiler loop output X
HPAC [9] compiler loop X X
GPUMixer [15] compiler X X v
Louetal [19] compiler image” output X
SYprox library host, device input, output v

*Lou et al. apply device perforation only to images.

3 Overview

SYprox is a header-only library designed to extend the
SYCL programming model with advanced approximate com-
puting techniques, including perforation, reconstruction, and
mixed precision. This extension enables developers to inte-
grate approximations into their applications with minimal
code modifications. Figure 1 illustrates a SYCL code enriched
with approximate computing features and shows the combi-
nation of applied approximations. SYprox provides an easy-
to-use and highly customizable interface. Programmers can
implement approximations using built-in parameterizable
schemes (prow, pcol) for perforation (pbuffer, paccessor) and
reconstruction (input and output), develop custom schemes
tailored to specific applications, or mix different data types
for mixed precision computing. SYprox introduces a novel
technique called host perforation, which selectively perfo-
rates data on the host side before transferring them to the
device, thus optimizing both computation and communica-
tion. In Figure 1 the host data are perforated and reduced
to the half data type before data transfer. The data on the
device are processed in a perforated shape using device perfo-
ration (paccessor). The perforated elements are then recon-
structed according to the selected schema (nn_out) and sent
back to the host. The ability of SYprox to combine different
approximations increases the range of feasible configurations
by generating new trade-offs between performance and ac-
curacy (Section 6). The flexibility of the SYprox interface not
only facilitates the adoption of approximate computing tech-
niques across heterogeneous architectures but also expands

Preprint — do not distribute.

I - S N S

Lorenzo Carpentieri and Biagio Cosenza

the approximation domain by enabling new Pareto-optimal
configurations.

4 SYprox Programming Interface
4.1 SYCL Programming Model

queue qgq(gpu_selector_v);
buffer<int, 2> outBuf (out,range<2>(N,N));
g.submit ([&](handler& h) {
accessor outAc(outBuf , h);
h.parallel_for(r,[=](id<2> i) {
outAc[i] += outAc[i] * 2;
s
1)s

Listing 1: SYCL accurate code

The SYprox library is based on SYCL a single-source C++
programming model designed to improve the performance
and portability of applications running on heterogeneous
architectures, such as CPUs, GPUs, and other accelerators.
Listing 1 shows a simple SYCL code. The parallel_for (line
5) define a kernel code to be executed on a device such as
a GPU. The device on which the kernel code is executed is
represented by a queue (line 1). SYCL offers two methods for
handling data transfers between the host and the device: a
pointer-based strategy called Unified Shared Memory (USM)
and the buffer/accessor. Our work leverages buffer and
accessor but can be easily extended to USM. Buffers (lines
2) abstract memory management and represent a range of
memory that can be used on either the host or the device.
Accessors (lines 5) are used to specify how to access the data
within a buffer (e.g read or write). Differently from USM,
with buffer and accessor the SYCL runtime automatically
manages data movements between the host and the device.
The next sections describe in detail how SYprox extends
the buffer and accessor of SYCL to enable approximate
computing features.

4.2 Data Perforation

The SYprox library implements two types of data perfora-
tion: the device perforation defined by Maier et al. [20] and a
novel approach called host perforation.

4.2.1 Device Perforation.

// buffers

g.submit ([&](handler &h){
paccessor<float,2,prow<float,2>> inAc{inBuf,6h};
paccessor<float,2,prow<float,2>> outAc{outBuf 6 h};
h.parallel_for (prange<>{N,N},[&](id<2> id){

outAc[id[@]1[id[1]1] = inAc[id[@]1[id[1]1]1*2;

s

3

Listing 2: SYprox code with device perforation

=T . I N T R R

SYprox

The device perforation is implemented as an extension of the
SYCL accessor class. The paccessor adds a new template
parameters to the SYCL accessor which specify how the
data are accessed on the device. The class implements an
on-line perforated access to the data by overloading the sub-
script operator ([]) so that, while all original data remain
in memory, only specific parts are accessed according to
the selected perforation schema (Section 4.2.3). Using a row
schema and skip factor of x the access to a[i][j] is trans-
lated into a[i*x][j]. Listing 2 shows a SYprox code with
device perforation. Lines 3-4 define two bidimensional per-
forated accessors using a row schema with a skip factor of
two. In line 6 according to the row schema, the data will be
accessed in a perforated shape. The access to the element at
the index {id[@],id[1]17} translates in {id[@]*2, id[1]3}.
The prange semantic (line 5) defines a set of deduction rules
to automatically infer the range of the kernel according to
the perforation schema used.

4.2.2 Host Perforation.

range<2> r{N,N}
pbuffer<float,2,prow<float,2>> inBuf(in,r);
buffer<float,2> outBuf(out,r);
q.submit ([&](handler &h){
// accessors...
h.parallel_for (prange<>{N, N},[&](id<2> id){
outAc[{id[@]x2,id[1]}]=inAc[id]*2;
)3
}

Listing 3: SYprox code with host perforation

SYprox implements host perforation by defining a pbuffer,
which extends the SYCL buffer. The pbuffer introduces new
template parameters into the SYCL buffer to specify the type
of perforation scheme to be used (4.2.3). The pbuffer inter-
cepts the SYCL buffer constructor, applying the perforation
to the data before the invocation of the buffer constructor.
This process involves iterating over the elements passed to
the pbuffer, perforating data based on the approximation
strategy defined by the ApproxSchema class (e.g. prow, pcol).
Listing 3 shows a SYprox code with host perforation and a
row scheme (line 2).

4.2.3 Perforation and Reconstruction Schemes.
SYprox pbuffer and paccessor class perforate and re-
construct data according to a perforation and reconstruction

schema defined by a specialization of the SYprox ApproxSchema

class. SYprox defines for the pbuffer and the paccessor
three built-in schemes configurable by the type of data used
and the number of data to skip (skip_factor).

Strided scheme skips a fixed number of data points in a
consistent stride. For example, with a skip factor of 2, every
other data point is skipped.

Preprint — do not distribute.

® N o Ul A W N =

© K N G R W N =

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Row scheme applies to bi-dimensional data. Skip entire
rows of data according to the defined skip factor.

Col is similar to the row scheme but operates column-wise.
For each schema, SYprox also provides input and output re-
construction strategies of two types: nearest neighbor where
perforated elements are reconstructed using the neighbor
element; lerp where perforated elements are reconstructed
with a linear interpolation of two or more elements. Both
reconstructions are implemented in an optimized way lever-
aging the SYCL sub-group and group algorithms. The SYprox
ApproxSchema class is designed with flexibility in mind to
serve as a base class for customizing data perforation meth-
ods according to the specific use case. Programmers can
define any kind of static approximation schema by imple-
menting the method defined by the ApproxSchema class.

range<2> r = range<2>{N,N};
pbuffer<float,2,prow<float,2,nn_out>> inBuf(in,r);
g.submit ([&](handler &h){
paccessor<float,2> inAc{inBuf,h,read_write};
h.parallel_for (prange<>{N,N},[&](id<2> id){
outAc[id] = inAc[id] * 2;
s
3

Listing 4: SYprox code with host perforation and output
reconstruction

Listing 4 shows a SYprox code that combines host perforation

with a row perforation schema and output reconstruction
with the nearest-neighbor reconstruction schema (line 2).

4.3 Mixed Precision

std::vector<float> in;

pbuffer<half ,2> inBuf(in,range<2>{N,N3});

buffer<float,2> outBuf (out,range<2>{N,N});

g.submit ([&]I(handler &h){
// accessors...
h.parallel_for (prange<>{N,
outAc[id] = inAc[id]x2;

E

3

N}, [&](id<2> id){

Listing 5: SYprox code with mixed precision

Listing 5 shows a mixed precision computation with float
and half data type with SYprox. The float data in the in
vector are converted in half precision during buffer con-
struction thorugh the sycl::reinterpret function . Then
the kernel performs a mixed-precision computation on float
and half data. The library supports all the lower precision
formats defined in the SYCL standard and also other formats
such as bfloat16, which are implemented as experimental
extensions in DPC++ [12].

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

5 Host Perforation

Host perforation Device Perforation

Host Device Host Device

sssss
* sssss
[TTTT]

([[1]] 111

[T1T11] EENES .
sEsEs

L L1 1] ssgEs

Figure 2: Host and device perforation approach.

This section presents host perforation a novel data perfo-
ration technique implemented in SYprox. Figure 2 shows a
comparison between the traditional device perforation and
the host perforation approach. Host perforation performs data
perforation on the host before sending the data to the de-
vice. In contrast, device perforation requires transferring all
data from the host to the device, where they are then ac-
cessed in a perforated shape according to a pattern defined
by the SYprox approximation schema (Section 4.2.3). The host
perforation offers two distinct advantages over the device
perforation. Firstly, it significantly reduces the amount of
data transfer needed between the host and the device. This
reduction in data transfer can lead to improved performance
in applications where data movement is a bottleneck. Sec-
ondly, host perforation provides a better cache utilization,
since eliminates data access issues due to the data layout. By
perforating the data on the host, accesses to the device data
can be performed continuously, maximizing cache utiliza-
tion (Section 7.3). However, in host perforation, once the data
have been perforated in the host, they cannot be used on the
device. This limitation may affect scenarios where devices
require direct access to perforated data for further processing
or computations. Moreover, host perforation is only bene-
ficial when the time required to perforate the data on the
host is less than the time needed to transfer the full dataset
to the device. In our experiments (Section 7), we tested data
sizes up to the maximum available and did not observe cases
where device perforation was more efficient. However, this
may not hold for systems with higher host-device memory
bandwidth or hosts with lower compute capabilities.

6 Combined Approximation

This section demonstrates how the integration of vari-
ous approximation techniques can lead to improvements in
both the accuracy and efficiency of applications. Figure 3

Preprint — do not distribute.

Lorenzo Carpentieri and Biagio Cosenza

illustrates the speedup and error for the individual approx-
imations and how they can be combined to generate new
performance and accuracy trade-offs using a blur filter ap-
plication as an example. To perforate the data, we applied a
skip factor of two, reducing the number of rows and columns
by half for row and column schema, respectively. The red
line represents the Pareto frontier: a set of optimal solu-
tions where no solution can be improved without degrading
another objective. Here, the Pareto front helps to identify
trade-offs between performance and error.

In the following sections, we provide insight into the be-
havior of individual approximation techniques and their com-
bination.

6.1 Individual Approximation

SYprox implements 5 approximation techniques: Mixed
Precision, Device and Host Perforation, and Reconstruction.
Each approximation can be represented as a set of different
configurations.

Mixed Precision. For mixed precision, we used floating
point data as a baseline and half precision as a lower pre-
cision data type (Mp = { floating, half}). With the half
configuration we mix floating-point and half data types. Un-
like data perforation, which skips data processing, mixed
precision results in only a 1% error, as it only processes the
entire dataset with reduced precision.

Device Perforation. The possible configurations with device
perforation depend on the number of schemes implemented.
In our experiment, we used the row and column schemes
with a skip factor of two, resulting in two configurations
(Dp = {row, col}). Data perforation without reconstruction
leads to an error of approximately 50% since for skip factor of
two half of the data are perforated. Furthermore, the column
schema exhibits a significant performance slowdown due to
increased cache misses caused by the data layout.

Host Perforation. The host approach shares the same num-
ber of configurations as the device perforation. Both ap-
proaches result in the same error, since they operate on the
same data. However, the host approach achieves a higher
speedup due to reduced data transfer and optimized data
layout for the column schema.

Reconstruction. SYprox provides two types of reconstruc-
tion schemes nearest-neighbor (nn) and linear interpolation
(Lerp) both implemented with input and output reconstruc-
tions, resulting in four different configurations (R = {nn_in,
nn_out, lerp_in, lerp_out}). Nearest-neighbor reconstruc-
tion is faster but less accurate since the reconstruction only
uses one of the computed elements to approximate the per-
forated data , while linear interpolation provides higher ac-
curacy with only a minor impact on speedup due to the time

SYprox

Device Perf.
Schema
+ device + row
A device + col

Mixed Precision
Mixed prec.
half
W float

42

41 41

X

40 40

39 ———a
0.0 0.5

Speedup

39
1.0 1.2 0.0

1
Speedup

Schema
+ host + row
A host + col

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Host Perf. Reconstruction

Reconstruction
lerp_in
nn_in
lerp_out

Combined Approximation

— xR
nn_out — +F
2
VAV v
0.0 R
0.5 1.01.2 0.0 0.5 1.0 1.5 0 1 2 3
Speedup Speedup Speedup

Figure 3: Individual and combined approximation

spent in the interpolation. Input reconstruction involves re-
constructing data before computation, resulting in less error
but lower performance. Output reconstruction, on the other
hand, reconstructs data after computation, which usually
leads to higher error but also higher speedup.

6.2 Approximation by Combining
Techniques

The SYprox interface provides a way to combine individ-
ual approximations. When combining these techniques, the
number of available configurations is equal to the Cartesian
product of each individual approximation: |Mp| X |Dp| X
|Hp| X |R|, resulting in an approximation space composed
of 32 points. Combining different approximation techniques
allows us to expand the approximation domain and explore
new performance-accuracy trade-offs. In fact, Figure 3 (Com-
bined Approximation) shows that we can achieve a 3x speedup
with a maximum error of 6%. However, not all combinations
yield efficient results. For example, any combination that
applies device perforation with a column schema typically
shows lower performance due to cache misses related to the
type of data layout. Composing different approximations
can also increase the error. However, signal reconstruction
techniques can help mitigate the error by generating new
Pareto-optimal solutions. Notice that the number of avail-
able configuration can also be higher since we can have
more data types (e.g. bfloat16) or for perforation schemes
skip_factors higher then two.

7 Experimental Evaluation

In this section, we present an analysis to assess the efficacy
of approximate computing techniques comparing SYprox
with state-of-the-art approaches [9, 20, 25].

7.1 Experimental Setup

7.1.1 Benchmark Description. We conducted the experimen-
tal evaluation on eight benchmarks described in Table 2.

Preprint — do not distribute.

Table 2: Applications used for experimental evaluation

Benchmark Domain Size Kernels’ LoC
median Medical imaging 30722 45
sobel Edge detection 30722 40
blur Image blurring 30722 21
tv Edge detection 30722 18
gaussian Image blurring 30722 34
hotspot Phisical simulation 40962 150
lavaMD Molecular dynamics 1283 219
leukocytes® Medical imaging 219x640 281

*leukocytes consists of 3 kernels that process several frames.

The benchmarks were selected to have a direct compar-
ison of the proposed host perforation approach with the
device perforation method described by Maier et al. [20].
We implemented the applications in SYCL using the SYprox
library to apply our approximation. To ensure a direct com-
parison with the HPAC framework [9, 25], all benchmarks
were ported from SYCL to OpenMP with GPU offloading
and then integrated into the framework using specific HPAC
directives for approximation.

The image processing benchmarks are executed on a dataset
composed of 100 images of 30722 size to analyze the error
variation of each approximation on different inputs. The in-
put data sets are taken from the USC-SIPI Image Database
[39]. For 1avaMD and hotspot we randomly generated 100
input files. The speedup is calculated using the accurate ap-
plication as a baseline, while the error uses the mean absolute

100% v | L=l

n i=1

o P where
1

percentage error, defined as MAPE =

I; and I; are the accurate and approximated data, respectively.

7.1.2 Parameter Description. In all experiments, we exe-
cuted host and device perforations with row and column
schemes using a skip factor of 2, while for mixed precision,
we adopted floating and half-data types. The half-configuration
mix floating point and half-data types. For the reconstruction
step, we applied the input (in) or output (out) reconstruc-
tion with the nearest neighbor (nn) or linear interpolation

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

Lorenzo Carpentieri and Biagio Cosenza

B Col Input reconstruction
E Row Input reconstruction

= &

o= -

E=1 Col Output reconstruction
EINI Row Output reconstruction

!

gaussian lavamd leukocytes

hotspot

Figure 4: Error of different approximate strategies.

30
20
L
<
<10
0 FL
median tv sobel3 blur
Float
a4
5 A& host + row @, device + row
‘ha
£3 .
D
g L2 ' "r i
R 1 PP
. R ZART AN A A G R GaRR A

Perforation
= host + col

Half

@z device + col

(a) Data transfer speedup.

median tv sobel3 blur

: Jﬁl:lii‘ s

gaussian hotspot lavamd leukocytes

sobel3 blur

median tv gaussian hotspot lavamd leukocytes

(b) Kernel speedup.

Figure 5: Data transfer 5a and kernel 5b speedup of all applications for host/device perforation and float/half
precision. The red line represents the baseline defined as the accurate execution.

(Lerp). Benchmarks implemented with local memory use a
size defined by the block size, which in our case is fixed to
32x32.

7.1.3 Software and Hardware Configuration. For the experi-
mental evaluation of our approach, we rely on Intel DPC++ [11]
SYCL compiler and the one provided by HPAC [9] for OpenMP.
All SYCL and OpenMP codes have been compiled using the
-03 flag. We performed our experiments on three separate
nodes, each equipped with: an AMD EPYC 7313 CPU and
AMD MI100 GPU; an Intel Xeon Platinum 8480 CPU and an
Intel Max 1100 GPU; an Intel Xeon Gold 5218 and NVIDIA
V100S.

7.2 Error Analysis

Figure 4 shows the MAPE for each benchmark executed
with host perforation and input/output reconstruction on 100

Preprint — do not distribute.

different data sets. For lavamd, hotspot, and leukocytes,
we only show the results for the column schema as they
have been implemented using one-dimensional buffers and a
one-dimensional perforation scheme that skips every other
element, effectively corresponding to a column schema in
two dimensions. The error analysis is not affected by the type
of perforation applied (host or device), as both techniques
perforate the same elements, leading to identical errors. For
this reason, our analysis focuses only on host perforation.
The results highlight that the amount of error depends on
type of computation performed by the application, input
data, perforation schema applied (row, col) and the type of
reconstruction (input, output).

Computation. The tv and sobel benchmarks exhibit an
error of up to 30% compared to the 1-15% error range of
the other applications. This variation is due to the type of
computation performed by each application. Applications

SYprox

based on average and median calculations (gaussian, blur,
and median) are less affected by data perforation compared
to the sobel and tv filters.

Input Data. The error introduced by data perforation is
also correlated with the type of input. Applying perforation
and reconstruction on inputs with higher data similarity
produces a lower error. Looking at the column schema results
for leukocytes and guassian the MAPE is in the range 1-
15% while for blur 3-5%. The variation in error is much
clearer on the sobel and tv benchmark, where MAPE varies
in the range 5-30%.

Perforation Schemes. The error is also affected by the type
of schema used. As an example, the blur application shows
an error between 3-5% for the row schema and 1-2% for the
column schema.

Reconstruction. The input reconstruction usually achieves
a lower error compared to the output reconstruction. With
the input approach, the perforated data are reconstructed
prior to computation. Consequently, the computation uses
the same number of data as the accurate application, result-
ing in a lower error. For all applications, the input recon-
struction has a lower or similar error compared to the output
reconstruction. For instance, in the leukocytes and sobel
application, output reconstruction leads to an error of 15%
and 30%, while the input reconstruction keeps it below 5%
and 20%.

To reduce the number of configuration in each plot, we
only show results using a skip_factor of two. However,
we conducted additional experiments to explore how the
variation of the skip_factor affects both performance and
error. As the skip_factor increases, performance improves
approximately linearly-typically, a skip factor of X yields
an X-fold speedup. In contrast, the error does not increase
linearly, as it is influenced by multiple factors discussed
above.

7.3 Host vs Device Perforation

Here, we focus on a performance comparison of the host
perforation implemented in SYprox with the device perfo-
ration defined by Maier et al. [20]. Figure 4 illustrates the
performance improvement in data transfer and kernel com-
putation for each application compared to accurate execution
(red dashed line) for both host (blue) and device (orange) per-
foration. The dashed and dotted hatch represent the row and
column perforation schemes, respectively.

Host perforation consistently outperforms device perfora-
tion in terms of data transfer speedup, as shown in Figure
5a. This is because host perforation reduces data transferred
to the device, achieving a speedup of 1.3x to 2x for floating-
point data and 2.5x to 4.2x for half-precision data. In contrast,

Preprint — do not distribute.

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

device perforation offers no such improvement, as all data
are sent to the device.

Looking at the kernel speedup results in Figure 5b, host
perforation outperforms device perforation in all applica-
tions, with the exception of lavamd and hotspot, where
both methods achieve the same speedup. Host perforation
speedups range from 1.7x to 4.2x, while device perforation
range from 0.5x to 3.5x. The primary reason for the lower
performance of device perforation is related to increased
cache misses, which significantly impact its efficiency, in
particular for the column schema. Profiling the applications
with NVIDIA Nsight Compute we can notice an L2 cache
hit rate of 76% for host perforation against the 49% of the
device approach. In device perforation, the perforated data
are still in memory, while accesses are performed in a perfo-
rated shape. Therefore, with a column schema, more than
half of the data loaded into the cache are never used dur-
ing computation, increasing the number of cache misses. In
contrast, with host perforation, we achieve comparable per-
formance for both schemes, since the data are reorganized
in memory to avoid the load of unused data in the cache.
For the column schema, this issue is highlighted in blur,
leukocytes, and gaussian, which achieve speedups of 0.5x,
0.6x, and 0.75x, respectively, resulting in a slowdown com-
pared to the accurate version, while host perforation reaches
a speedup of up to 2x. For the row schema, gaussian, tv,
and blur show a similar behaviour since each kernel thread
processes a 6x6 filter, leading to the same access problem
of the column schema. In contrast, for sobel and median,
which use a smaller 3x3 filter, device perforation achieves
similar performance compared to host perforation due to
the lower number of cache misses. The slowdown related to
cache misses is mitigated using the half data types, since
with reduced precision, we can store more data in the cache,
resulting in a lower number of cache misses.

7.4 SYprox vs HPAC

In this section, we conducted a multi-objective evaluation
to analyze the trade-offs between speedup and error in the
SYprox and HPAC frameworks. All SYprox benchmarks were
ported from SYCL to OpenMP with GPU offloading and sub-
sequently integrated into the HPAC framework. We tested
HPAC applications with two loop perforation approaches:
small skips one iteration for every n iterations; large executes
one iteration for every n iterations. The hotspot results with
HPAC are unavailable because using the perforation pragma
defined by HPAC causes the application to run indefinitely.
Figure 6 illustrates multi-objective plots for the 8 applica-
tions comparing the SYprox and HPAC frameworks. The
x-axis represents the speedup, while the y-axis the Mean
Absolute Percentage Error (MAPE). Points located in the

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

SYprox
i SYprox SYprox :
o device + e n Perforat\o:/Rteioztr\r:cno:nn o Mot & i Schema + Mixed prec. Mixed prec. HPAC Perforation Pareto Front
evice + flerp_| 0s evice 5 0s 8 + row + float 4+ col + float half el Sl & large-4 = lRe
device + nn_in @® host + lerp_in host + nn_out X row + half v col + half B float small-4 ¢ large-2 ® large-8 —— SYprox
@® host + device + lerp_in ® host + lerp_out
median tv sobel blur gaussian
L]
<80
=)
s 60 AW ¢
a 40 N *k ,_J
<50 iy il g
= 0 A"+ p :l: VaY XX, Ayt W
0 1 2 3 40 1 2 3 40 1 2 3 40 1 2 3
Speedup Speedup Speedup Speedup Speedup
lavamd leukocytes hotspot

%

MAPE

Speedup

SO_J ﬁﬁ‘
0
0

2
1
[]
0
.0 2.5 5.0 7.5 0.0 0.5
Speedup

2

0
0.0 2.5 5.0 7.5
Speedup

1.0 1.5

Figure 6: SYprox vs HPAC. The colors represent perforation and reconstruction techniques. Markers define the
combination of schemes and data types. The green and red lines represent the HPAC and SYprox Pareto frontier.

bottom right corner of the plot are preferable as they indi-
cate better performance with a lower error. For SYprox, the
color of markers with different shades of red and blue repre-
sent the device and host perforation approaches, respectively,
while the violet point represents the combination of host and
device perforation. The different shades of a color indicate
different reconstruction methods: nearest-neighbor or linear
interpolation with input or output reconstruction (nn_in,
nn_out, lerp_in, lerp_out). Markers are utilized to differ-
entiate between combinations of perforation schemes (row,
column) and data types (float, half). Within the HPAC setup,
the blue markers denote configurations that employ loop
perforation of type ’large’, while the orange ones employ
loop perforation of type ’small’. The different markers in the
HPAC framework correspond to different skip factors. The
red and green lines represent the Pareto frontier of SYprox
(Ps) and HPAC (Ppy), respectively.

Multi-objective Analyses. For all benchmarks, the HPAC
configurations show a higher error range compared to SYprox,
due to the lack of reconstruction techniques. For the gaussian
benchmark, it achieves up to 3x speedup at the cost of the
80% error, while for the other benchmarks, the speedup is
between 1.5x and 2x with an error in the range of 10-60%.
On the other hand, SYprox has multiple configurations in-
volving mixed precision and perforation/reconstruction with
different schemes. This diversity allows for a wide range of
trade-offs, potentially making it more flexible in tuning per-
formance versus accuracy. Most the SYprox configurations
achieve an error less than 20% while achieving a nearly 4x

Preprint — do not distribute.

speedup for all benchmarks. Furthermore, except for the tv
benchmark, the Pareto frontier of SYprox always dominates
the one of HPAC. This implies that for any given range of
error or performance, SYprox offers configurations that are
at least as good as, and often better than, those offered by
HPAC.

Hypervolume Analyses. Table 3 shows different metrics to
compare the configuration of HPAC and SYprox. |Py| and
|Ps| represent the number of points in the Pareto set of HPAC
and SYprox, respectively. For all benchmarks, we can notice
|Ps| >= |Py| meaning that the SYprox framework gener-
ates more Pareto optimal solution compared to HPAC. In
multi-objective optimization, the hypervolume metric [40]
(HV) is used to evaluate the performance of a Pareto front by
calculating the volume of the space in the objective domain
that is dominated by the Pareto front, up to a reference point.
A larger hypervolume indicates better performance, as it
means that the Pareto front spans a larger region of the ob-
jective space, representing more optimal trade-offs between
the objectives. In our case, we are interested in the coverage
difference between two sets: the Pareto set P calculated con-
sidering the configuration of both SYprox and HPAC; and
the Pareto set calculated only considering the SYprox con-
figurations Ps. Therefore, we use the binary hypervolume
metric [34], which is defined as D(P, Ps) = HV(P)—HV (Ps),
where HV (P) and HV (Ps) represents the hypervolume of
the P and Ps Pareto frontier. In our experiment, the reference
point for each benchmark has been selected according to
the analysis provided by Ishibuchi et al.[13] in order to have

SYprox

accurate hypervolume results. Looking at the hypervolume
values the SYprox Pareto front always covers a larger region
of the objective space compared to HPAC. This observation
indicates that the SYprox approximations are distributed
along the speedup and error axes in a way that encompasses
wider levels of performance and accuracy. The coverage dif-
ference (D(P, Py)) shows that for all the applications the
Pareto frontier of SYprox dominates the one of HPAC. The
only exception is the tv and lavamd benchmarks, where the
coverage difference is non-zero because there are two and
one points, respectively, in Py that have no counterparts
in the SYprox Pareto front that outperform them in both
dimensions.

Table 3: Evaluation of HPAC and SYprox Pareto fronts

Benchmark |PH| |P5| HVH HVS D(P, PH)
median 3 6 0.1 5.9 0
sobel 2 5 0 18.7 0
blur 3 7 33 5.7 0

tv 3 5 1.7 14.6 1.2
gaussian 3 5 2.2 3.8 0
leukocytes 3 3 1.4 1.8 0
lavaMD 1 5 3.05 6.8 0.07
hotspot - 4 - 8.1 -

7.5 Approximation Space Evaluation

Figure 7 shows the speedup and error of SYprox in com-
parison to the Maier et al. approach, highlighting several key
advantages of our method.

7 Perforation/Recontruction
® device + lerp_in ® host + lerp_in
6 device + nn_in ® host + lerp_out
® host + device + lerp_in host + nn_in
5 host + device + nn_in host + nn_out
s Schema + Mixed prec.
X 4 + row + float A col + float
o x row + half v col + half
X X
o ’
<3 Mixed prec.
= half +
u float
2
Pareto Front

—— Maier et al.
1 g SYprox

AV

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Speedup

Figure 7: Domain space of the approximate computing
techniques for Maier et al. and SYprox approach. Dif-
ferent colors represent combination of perforation and
reconstruction. Markers distinguish the combination
of perforation schemes and data types.

Preprint — do not distribute.

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Enhanced Coverage of the Objective Space. One of the pri-
mary benefits of SYprox lies in its ability to generate a sub-
stantially larger number of configurations compared to the
approach proposed by Maier et al. This advantage is illus-
trated in Figure 7, where the SYprox configurations span a
wider section of the objective space. This expanded coverage
allows an exploration of a wider spectrum of speedup and
error trade-offs, thereby facilitating more precise optimiza-
tion tailored to diverse application requirements. The SYprox
configurations extend across both axes, indicating a versatile
approach capable of addressing various performance and
error needs. Additionally, the approximation domain can be
further broadened by adjusting the skip factor parameter,
thereby generating new potential Pareto-optimal solutions.

Discovery of New Pareto Optimal Solutions. By combining
different approximation techniques, SYprox not only expands
the configuration space, but also identifies new Pareto opti-
mal solutions that were previously unattainable with existing
methods. SYprox’s advantages are evident when considering
device perforation with the column schema. In this case, the
column schema can cause cache misses due to the data lay-
out, leading to a performance slowdown of up to two times.
By applying host perforation instead of device perforation,
we mitigate the cache misses generated by the column data
layout. This adjustment allows the configuration with host
perforation and the column schema to perform comparably
to the row schema and even become a Pareto optimal solu-
tion. This demonstrates how SYprox can overcome specific
performance bottlenecks and optimize configurations that
were previously suboptimal. This capability is reflected in
the red Pareto front associated with SYprox, which domi-
nates the green Pareto front of Maier et al., showing that our
approach consistently outperforms the prior state-of-the-art.

Combining Approximation. SYprox demonstrates signifi-
cant performance improvements by combining various ap-
proximation techniques. Combining mixed precision with
the other approximation often generates new configurations
that are Pareto optimal, since reducing precision in most
cases introduces a small error with up to 2x speedup. Fur-
thermore, by combining host and device perforation with
mixed precision, we achieve up to 3.5x speedup with only a
7% error. This combination is particularly effective because
it takes advantage of the strengths of all the approximations.

7.6 Performance and Accuracy Portability

Figure 8 demonstrates the portability of our approach
across different hardware architectures, including AMD MI100,
Intel Max 1100 and NVIDIA V100S GPUs. A key observation
is that the error remains consistent across all three hardware
platforms. This consistency highlights that the approximate

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA

SYprox
Perforation/Recontruction

® device + lerp_in host + device + nn_in

device + nn_in ® host + lerp_in
® host + device + lerp_in ® host + lerp_out
AMD

(2]

(]
Ko}

o

n

—_

=

Ko}

2 3
Speedup

Lorenzo Carpentieri and Biagio Cosenza

SYpro_x _SYprox
oeke - i B Schema + Mixed prec. Mixed prec.
- + row + float A col + float half
host + nn_out
- % row + half v col + half m float
Intel NVIDIA
Y v T
A 4 v
A % 3
. g
0 05 10 15 20 25 30 35
—%
+
x %
++
VAV
A
4 6 8 00 05 10 15 20 25 30
Speedup Speedup

Figure 8: Performance evaluation of SYprox on AMD, Intel and NVIDIA hardware. The color represents different
perforation and reconstruction techniques. Markers are used to distinguish the combination of perforation schemes

and data types.

computing techniques implemented in SYprox are predomi-
nantly data-dependent rather than hardware-dependent. The
only notable exception is half-precision, which introduces
slight variations due to differences in hardware precision
handling. However, these variations are minimal and do not
significantly affect the overall error profile. When analyzing
performance, we notice some variability between hardware
platforms. All platforms achieve speedups of more than 3x,
with some hardware yielding even better performance using
the same approximation.

8 Conclusion

This paper presents SYprox, a novel approach for hetero-
geneous approximate computing. SYprox makes three major
breakthroughs: a SYCL-based interface that extends SYCL
buffer and accessor with approximate computing capabilites;
a new data perforation approach that allows to fully exploit
the host-device execution model; a way to combine data
perforation, reconstruction, and mixed process expanding
the approximate space with new Pareto-optimal configura-
tions. We have experimentally assessed the SYprox method-
ology on AMD MI100, Intel Max 1100, and NVIDIA V100,
comparing it with state-of-the-art frameworks. The results
highlighted the advantages of host perforation, which con-
sistently outperforms device perforation by reducing both
kernel computation and data transfer times. Moreover, the

Preprint — do not distribute.

ability of SYprox to combine multiple approximation tech-
niques provides a rich set of Pareto optimal solutions that
outperform prior methods, such as those proposed by Maier
et al. and the HPAC framework. SYprox not only discovers
more Pareto optimal solutions, but also expands the cov-
erage of the objective space, offering greater flexibility for
tuning trade-offs between speedup and error. Finally, our
approach demonstrated robust performance and accuracy
across different GPUs, validating the SYprox performance
and accuracy portability.

Acknowledgments

We acknowledge financial support under the National Re-
covery and Resilience Plan (NRPP), call for tender No. 104
published on 02/02/2022 by the Italian Ministry of University
and Research (MUR), funded by the European Union - Next

Generation EU, Mission 4, Component 1, CUP D53D23008590001,

project title LibreRT.
We thank CINECA for providing access to the Intel Max
1100 GPU.

References

[1] Woongki Baek and Trishul M Chilimbi. 2010. Green: A framework
for supporting energy-conscious programming using controlled ap-
proximation. In Proceedings of the 31st ACM SIGPLAN Conference on
Programming Language Design and Implementation.

SYprox

[2] Hrishav Bakul Barua and Kartick Chandra Mondal. 2019. Approxi-

[10

[11

[12

(13

(14

(15

[16

(17

[18

=

=

[t

=

=

—

—

—

mate computing: A survey of recent trends—bringing greenness to
computing and communication. Journal of The Institution of Engineers
(India): Series B (2019).

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing program semantics to unleash paralleliza-
tion. In 2015 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO).

Stefano Cherubin and Giovanni Agosta. 2020. Tools for reduced preci-
sion computation: a survey. ACM Computing Surveys (CSUR) (2020).
Stefano Cherubin, Daniele Cattaneo, Michele Chiari, Antonio Di Bello,
and Giovanni Agosta. 2020. TAFFO: Tuning Assistant for Floating to
Fixed Point Optimization. IEEE Embedded Systems Letters (2020).

Eva Darulova and Viktor Kuncak. 2017. Towards a compiler for reals.
ACM Transactions on Programming Languages and Systems (TOPLAS)
(2017).

Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. 2016. Multi-
objective optimization. In Decision sciences.

Mikhail Figurnov, Aizhan Ibraimova, Dmitry P Vetrov, and Pushmeet
Kohli. 2016. Perforatedcnns: Acceleration through elimination of
redundant convolutions. Advances in neural information processing
systems (2016).

Zane Fink, Konstantinos Parasyris, Giorgis Georgakoudis, and
Harshitha Menon. 2023. HPAC-Offload: Accelerating HPC Applica-
tions with Portable Approximate Computing on the GPU. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis.

Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal,
and Martin Rinard. 2009. Using code perforation to improve perfor-
mance, reduce energy consumption, and respond to failures. (2009).
Intel. 2022. oneAPI Data Parallel C++ compiler. https://github.com/
intel/llvim/releases/tag/2022-09

Intel Corporation. 2024. SYCL EXT ONEAPI Bfloat16 Math Func-
tions. https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/
experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc Ac-
cessed: 2024-09-12.

Hisao Ishibuchi, Ryo Imada, Yu Setoguchi, and Yusuke Nojima. 2017.
Reference point specification in hypervolume calculation for fair com-
parison and efficient search. In Proceedings of the genetic and evolu-
tionary computation conference.

Maria Kotsifakou, Prakalp Srivastava, Matthew D Sinclair, Rakesh Ko-
muravelli, Vikram Adve, and Sarita Adve. 2018. Hpvm: Heterogeneous
parallel virtual machine. In Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
Ignacio Laguna, Paul C Wood, Ranvijay Singh, and Saurabh Bagchi.
2019. Gpumixer: Performance-driven floating-point tuning for gpu sci-
entific applications. In High Performance Computing: 34th International
Conference, ISC High Performance 2019, Frankfurt/Main, Germany, June
16-20, 2019, Proceedings 34.

Michael O. Lam, Jeffrey K. Hollingsworth, Bronis R. de Supinski, and
Matthew P. Legendre. 2013. Automatically Adapting Programs for
Mixed-Precision Floating-Point Computation. In Proceedings of the
27th International ACM Conference on International Conference on Su-
percomputing.

Kooktae Lee and Raktim Bhattacharya. 2016. On the relaxed synchro-
nization for massively parallel numerical algorithms. In 2016 American
Control Conference (ACC).

Shikai Li, Sunghyun Park, and Scott Mahlke. 2018. Sculptor: Flexible
approximation with selective dynamic loop perforation. In Proceedings
of the 2018 International Conference on Supercomputing.

Preprint — do not distribute.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

ICS ’25, June 8-11, 2025, Salt Lake City, UT, USA

Liming Lou, Paul Nguyen, Jason Lawrence, and Connelly Barnes. 2016.
Image perforation: Automatically accelerating image pipelines by in-
telligently skipping samples. ACM Transactions on Graphics (TOG)
(2016).

Daniel Maier, Biagio Cosenza, and Ben Juurlink. 2018. Local memory-
aware kernel perforation. In Proceedings of the 2018 International Sym-
posium on Code Generation and Optimization.

Daniel Maier and Ben Juurlink. 2021. Model-Based Loop Perforation.
In European Conference on Parallel Processing.

Daniel Maier, Nadjib Mammeri, Biagio Cosenza, and Ben Juurlink.
2019. Approximating memory-bound applications on mobile GPUs.
In 2019 International Conference on High Performance Computing &
Simulation (HPCS).

Subrata Mitra, Manish K Gupta, Sasa Misailovic, and Saurabh Bagchi.
2017. Phase-aware optimization in approximate computing. In 2017
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO).

Sparsh Mittal. 2016. A survey of techniques for approximate computing.
ACM Computing Surveys (CSUR) (2016).

Konstantinos Parasyris, Giorgis Georgakoudis, Harshitha Menon,
James Diffenderfer, Ignacio Laguna, Daniel Osei-Kuffuor, and Markus
Schordan. 2021. HPAC: evaluating approximate computing techniques
on HPC OpenMP applications. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Anal-
ysis.

Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi
Nair, and Daniel Prener. 2012. Programming with relaxed synchro-
nization. In Proceedings of the 2012 ACM workshop on Relaxing syn-
chronization for multicore and manycore scalability.

Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios
Sidiroglou. 2010. Patterns and Statistical Analysis for Understand-
ing Reduced Resource Computing. ACM Sigplan Notices (2010).
Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, James
Demmel, William Kahan, Koushik Sen, David H. Bailey, Costin Iancu,
and David Hough. 2013. Precimonious: Tuning Assistant for Floating-
Point Precision. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis.

Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mabhlke. 2014. Paraprox: Pattern-based approximation for data parallel
applications. In Proceedings of the 19th international conference on Ar-
chitectural support for programming languages and operating systems.
Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott
Mabhlke. 2014. Paraprox: Pattern-based approximation for data parallel
applications. In Proceedings of the 19th international conference on Ar-
chitectural support for programming languages and operating systems.
Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati,
and Scott Mahlke. 2013. Sage: Self-tuning approximation for graphics
engines. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture.

Adrian Sampson, André Baixo, Benjamin Ransford, Thierry Moreau,
Joshua Yip, Luis Ceze, and Mark Oskin. 2015. Accept: A programmer-
guided compiler framework for practical approximate computing. Uni-
versity of Washington Technical Report UW-CSE-15-01 (2015).

Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapra-
gasam, Luis Ceze, and Dan Grossman. 2011. Ener]J: Approximate Data
Types for Safe and General Low-Power Computation. In Proceedings of
the 32nd ACM SIGPLAN Conference on Programming Language Design
and Implementation.

Ke Shang, Hisao Ishibuchi, Linjun He, and Lie Meng Pang. 2020. A
survey on the hypervolume indicator in evolutionary multiobjective
optimization. IEEE Transactions on Evolutionary Computation (2020).

https://github.com/intel/llvm/releases/tag/2022-09
https://github.com/intel/llvm/releases/tag/2022-09
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_bfloat16_math_functions.asciidoc

ICS °25, June 8-11, 2025, Salt Lake City, UT, USA Lorenzo Carpentieri and Biagio Cosenza

[35] Hashim Sharif, Yifan Zhao, Maria Kotsifakou, Akash Kothari, Ben Vandierendonck, and Dimitrios S Nikolopoulos. 2016. Exploiting sig-
Schreiber, Elizabeth Wang, Yasmin Sarita, Nathan Zhao, Keyur Joshi, nificance of computations for energy-constrained approximate com-
Vikram S Adve, et al. 2021. ApproxTuner: a compiler and runtime puting. International Journal of Parallel Programming (2016).
system for adaptive approximations. In Proceedings of the 26th ACM [38] Vassilis Vassiliadis, Konstantinos Parasyris, Charalambos Chalios,
SIGPLAN Symposium on Principles and Practice of Parallel Program- Christos D Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans
ming. Vandierendonck, and Dimitrios S Nikolopoulos. 2015. A programming

[36] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and model and runtime system for significance-aware energy-efficient
Martin Rinard. 2011. Managing performance vs. accuracy trade-offs computing. ACM SIGPLAN Notices (2015).
with loop perforation. In Proceedings of the 19th ACM SIGSOFT sym- [39] Allan G. Weber. 2006. The USC-SIPI Image Database. http://sipi.usc.
posium and the 13th European conference on Foundations of software edu/database/database.php. Accessed: August 2018.
engineering. [40] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca,

[37] Vassilis Vassiliadis, Charalampos Chalios, Konstantinos Parasyris, and Viviane Grunert Da Fonseca. 2003. Performance assessment of
Christos D Antonopoulos, Spyros Lalis, Nikolaos Bellas, Hans multiobjective optimizers: An analysis and review. IEEE Transactions

on evolutionary computation (2003).

Preprint — do not distribute.

http://sipi.usc.edu/database/database.php
http://sipi.usc.edu/database/database.php

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Approximation Techniques
	2.2 Programming Models Approaches

	3 Overview
	4 SYprox Programming Interface
	4.1 SYCL Programming Model
	4.2 Data Perforation
	4.3 Mixed Precision

	5 Host Perforation
	6 Combined Approximation
	6.1 Individual Approximation
	6.2 Approximation by Combining Techniques

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Error Analysis
	7.3 Host vs Device Perforation
	7.4 SYprox vs HPAC
	7.5 Approximation Space Evaluation
	7.6 Performance and Accuracy Portability

	8 Conclusion
	Acknowledgments
	References

